
Heimo Mairbäurl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/30869/publications.pdf Version: 2024-02-01

Ηειμο Μλιρεδαρι

#	Article	IF	CITATIONS
1	In Vitro Erythropoiesis at Different pO2 Induces Adaptations That Are Independent of Prior Systemic Exposure to Hypoxia. Cells, 2022, 11, 1082.	4.1	3
2	Space anemia unexplained: Red blood cells seem to be spaceâ€proof. American Journal of Hematology, 2022, 97, .	4.1	1
3	Absence of neocytolysis in humans returning from a 3â€week highâ€altitude sojourn. Acta Physiologica, 2021, 232, e13647.	3.8	26
4	Of mice and men ¹ : How to achieve a better life with lower total Hb mass after returning from hypoxia to normoxia. (response to Song and colleagues). Acta Physiologica, 2021, 233, e13720.	3.8	3
5	"So is science …â€ ¹ : No evidence for <i>neocytolysis</i> on descending the mountains (Response to Rice and Gunga). Acta Physiologica, 2021, 233, e13709.	3.8	3
6	Squeezing viscous blood through narrow pipes, and other problems of highâ€altitude polycythaemia. Journal of Physiology, 2021, 599, 4011-4012.	2.9	0
7	In Search of a Sensor: How Does CO2 Regulate Alveolar Ion Transport?. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 571-572.	2.9	0
8	Exposure to 16 h of normobaric hypoxia induces ionic edema in the healthy brain. Nature Communications, 2021, 12, 5987.	12.8	7
9	Kinetics of Changes in Hemoglobin After Ascent to and Return from High Altitude. Journal of Science in Sport and Exercise, 2020, 2, 7-14.	1.0	1
10	Geographical ancestry affects normal hemoglobin values in high-altitude residents. Journal of Applied Physiology, 2020, 129, 1451-1459.	2.5	5
11	Iron metabolism in high-altitude residents. Journal of Applied Physiology, 2020, 129, 920-925.	2.5	12
12	The role of hypoxiaâ€induced modulation of alveolar epithelial Na ⁺ ―transport in hypoxemia at high altitude. Pulmonary Circulation, 2020, 10, 50-58.	1.7	10
13	Rapid Ascent to 4559 m Is Associated with Increased Plasma Components of the Vascular Endothelial Glycocalyx and May Be Associated with Acute Mountain Sickness. High Altitude Medicine and Biology, 2020, 21, 176-183.	0.9	7
14	Preserved right ventricular function but increased right atrial contractile demand in altitude-induced pulmonary hypertension. International Journal of Cardiovascular Imaging, 2020, 36, 1069-1076.	1.5	10
15	Genetic Predisposition to High-Altitude Pulmonary Edema. High Altitude Medicine and Biology, 2020, 21, 28-36.	0.9	21
16	The increase in hemoglobin concentration with altitude varies among human populations. Annals of the New York Academy of Sciences, 2019, 1450, 204-220.	3.8	61
17	The Hen or the Egg: Impaired Alveolar Oxygen Diffusion and Acute High-altitude Illness?. International Journal of Molecular Sciences, 2019, 20, 4105.	4.1	9
18	Impairment of left atrial mechanics does not contribute to the reduction in stroke volume after active ascent to 4559Âm. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 223-231.	2.9	11

Heimo Mairbärl

#	Article	IF	CITATIONS
19	Inhaled Budesonide Does Not Affect Hypoxic Pulmonary Vasoconstriction at 4559 Meters of Altitude. High Altitude Medicine and Biology, 2018, 19, 52-59.	0.9	8
20	Identification of a Prognostic Hypoxia-Associated Gene Set in IDH-Mutant Glioma. International Journal of Molecular Sciences, 2018, 19, 2903.	4.1	30
21	Neocytolysis: How to Get Rid of the Extra Erythrocytes Formed by Stress Erythropoiesis Upon Descent From High Altitude. Frontiers in Physiology, 2018, 9, 345.	2.8	19
22	Extreme Terrestrial Environments: Life in Thermal Stress and Hypoxia. A Narrative Review. Frontiers in Physiology, 2018, 9, 572.	2.8	53
23	Reliability of echocardiographic speckle-tracking derived bi-atrial strain assessment under different hemodynamic conditions. International Journal of Cardiovascular Imaging, 2017, 33, 1685-1692.	1.5	10
24	Inhaled budesonide does not prevent acute mountain sickness after rapid ascent to 4559â€m. European Respiratory Journal, 2017, 50, 1700982.	6.7	29
25	Remote ischemic preconditioning does not prevent acute mountain sickness after rapid ascent to 3,450 m. Journal of Applied Physiology, 2017, 123, 1228-1234.	2.5	21
26	Inhibition of alveolar Na transport and LPS causes hypoxemia and pulmonary arterial vasoconstriction in ventilated rats. Physiological Reports, 2016, 4, e12985.	1.7	10
27	The HMGB1 protein induces a metabolic type of tumour cell death by blocking aerobic respiration. Nature Communications, 2016, 7, 10764.	12.8	41
28	Downregulation of the TGFβ Pseudoreceptor BAMBI in Non–Small Cell Lung Cancer Enhances TGFβ Signaling and Invasion. Cancer Research, 2016, 76, 3785-3801.	0.9	75
29	FXYD1 negatively regulates Na+/K+-ATPase activity in lung alveolar epithelial cells. Respiratory Physiology and Neurobiology, 2016, 220, 54-61.	1.6	15
30	Response to the letter: role of remote ischemic preconditioning against acute mountain sickness during early phase by Sikri and Chawla. Physiological Reports, 2015, 3, e12498.	1.7	0
31	Remote ischemic preconditioning delays the onset of acute mountain sickness in normobaric hypoxia. Physiological Reports, 2015, 3, e12325.	1.7	18
32	Does High Alveolar Fluid Reabsorption Prevent HAPE in Individuals with Exaggerated Pulmonary Hypertension in Hypoxia?. High Altitude Medicine and Biology, 2015, 16, 283-289.	0.9	11
33	Con: Corticosteroids Are Useful in the Management of HAPE. High Altitude Medicine and Biology, 2015, 16, 190-192.	0.9	5
34	Rebuttal to the PRO Statement. High Altitude Medicine and Biology, 2015, 16, 194-194.	0.9	0
35	Remote ischemic preconditioning for prevention of high-altitude diseases: fact or fiction?. Journal of Applied Physiology, 2015, 119, 1143-1151.	2.5	24
36	Increased hepcidin levels in high-altitude pulmonary edema. Journal of Applied Physiology, 2015, 118, 292-298.	2.5	13

Heimo Mairbärl

#	Article	IF	CITATIONS
37	Role of Hemolysis in Red Cell Adenosine Triphosphate Release in Simulated Exercise Conditions In Vitro. Medicine and Science in Sports and Exercise, 2013, 45, 1941-1947.	0.4	16
38	Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Frontiers in Physiology, 2013, 4, 332.	2.8	276
39	Oxygen Transport by Hemoglobin. , 2012, 2, 1463-1489.		149
40	Expression and regulation of AC133 and CD133 in glioblastoma. Glia, 2011, 59, 1974-1986.	4.9	40
41	β2-Adrenergics in Hypoxia Desensitize Receptors but Blunt Inhibition of Reabsorption in Rat Lungs. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 1059-1068.	2.9	14
42	Acute in vitro hypoxia and high-altitude (4,559 m) exposure decreases leukocyte oxygen consumption. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 300, R32-R39.	1.8	9
43	In vitro hypoxia impairs β ₂ -adrenergic receptor signaling in primary rat alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2009, 296, L500-L509.	2.9	14
44	Co ulture of alveolar epithelial and endothelial cells blunts failure of alveolar barrier function in hypoxia. FASEB Journal, 2008, 22, 932.8.	0.5	0
45	Dexamethasoneâ€stimulation of Naâ€transport differs across lung epithelia. FASEB Journal, 2008, 22, 764.6.	0.5	0
46	Inhibition of Gi/oâ€proteins prevents hypoxiaâ€induced impairment of beta2â€adrenergic signalling in primary rat alveolar epithelial cells. FASEB Journal, 2008, 22, 748.8.	0.5	0
47	Dexamethasone prevents transport inhibition by hypoxia in rat lung and alveolar epithelial cells by stimulating activity and expression of Na ⁺ -K ⁺ -ATPase and epithelial Na ⁺ channels. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1332-L1338.	2.9	55
48	High altitude pulmonary edema: A pressure-induced leak. Respiratory Physiology and Neurobiology, 2007, 158, 266-273.	1.6	44
49	Reducing the Incidence of High-Altitude Pulmonary Edema. Annals of Internal Medicine, 2007, 146, 613.	3.9	Ο
50	Both Tadalafil and Dexamethasone May Reduce the Incidence of High-Altitude Pulmonary Edema. Annals of Internal Medicine, 2006, 145, 497.	3.9	253
51	Role of alveolar epithelial sodium transport in high altitude pulmonary edema (HAPE). Respiratory Physiology and Neurobiology, 2006, 151, 178-191.	1.6	39
52	Hypoxia Decreases Cellular ATP Demand and Inhibits Mitochondrial Respiration of A549 Cells. American Journal of Respiratory Cell and Molecular Biology, 2005, 32, 44-51.	2.9	69
53	Physiological aspects of high-altitude pulmonary edema. Journal of Applied Physiology, 2005, 98, 1101-1110.	2.5	292
54	Nasal Epithelium Potential Difference at High Altitude (4,559 m). American Journal of Respiratory and Critical Care Medicine, 2003, 167, 862-867.	5.6	52

Heimo Mairbärl

#	Article	IF	CITATIONS
55	Alveolar Flooding at High Altitude: Failure of Reabsorption?. Physiology, 2003, 18, 55-59.	3.1	15
56	Altered ion transporter expression in bronchial epithelium in mountaineers with high-altitude pulmonary edema. Journal of Applied Physiology, 2003, 95, 1843-1850.	2.5	34
57	Pathogenesis of High-Altitude Pulmonary Edema. JAMA - Journal of the American Medical Association, 2002, 287, 2228.	7.4	287
58	Hypoxia decreases active Na transport across primary rat alveolar epithelial cell monolayers. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 282, L659-L665.	2.9	70
59	Possible role of ROS as mediators of hypoxia-induced ion transport inhibition of alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L640-L648.	2.9	22
60	Hypoxia decreases proteins involved in epithelial electrolyte transport in A549 cells and rat lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L1110-L1119.	2.9	84
61	Cation transport and cell volume changes in maturing rat reticulocytes. American Journal of Physiology - Cell Physiology, 2000, 279, C1621-C1630.	4.6	28
62	Impairment of cation transport in A549 cells and rat alveolar epithelial cells by hypoxia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1997, 273, L797-L806.	2.9	59