
Christine Rampon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3086856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed. Scientific Reports, 2013, 3, 2084.	1.6	256
2	Vascular Endothelial–Cadherin Tyrosine Phosphorylation in Angiogenic and Quiescent Adult Tissues. Circulation Research, 2005, 96, 384-391.	2.0	112
3	An evolutionarily-conserved Wnt3/β-catenin/Sp5 feedback loop restricts head organizer activity in Hydra. Nature Communications, 2019, 10, 312.	5.8	84
4	Hydrogen peroxide (H2O2) controls axon pathfinding during zebrafish development. Developmental Biology, 2016, 414, 133-141.	0.9	77
5	Photocontrol of Protein Activity in Cultured Cells and Zebrafish with One―and Twoâ€Photon Illumination. ChemBioChem, 2010, 11, 653-663.	1.3	72
6	C5â€ÐNA Methyltransferase Inhibitors: From Screening to Effects on Zebrafish Embryo Development. ChemBioChem, 2011, 12, 1337-1345.	1.3	69
7	Molecular Mechanism of Systemic Delivery of Neural Precursor Cells to the Brain: Assembly of Brain Endothelial Apical Cups and Control of Transmigration by CD44. Stem Cells, 2008, 26, 1673-1682.	1.4	63
8	Photoactivation of the CreER ^{T2} Recombinase for Conditional Site-Specific Recombination with High Spatiotemporal Resolution. Zebrafish, 2010, 7, 199-204.	0.5	61
9	Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants, 2018, 7, 159.	2.2	59
10	Protocadherin 12 (VE-cadherin 2) is expressed in endothelial, trophoblast, and mesangial cells. Experimental Cell Research, 2005, 302, 48-60.	1.2	50
11	Nerves Control Redox Levels in Mature Tissues Through Schwann Cells and Hedgehog Signaling. Antioxidants and Redox Signaling, 2016, 24, 299-311.	2.5	48
12	PECAMâ€1 engagement counteracts ICAMâ€1â€induced signaling in brain vascular endothelial cells ² . Journal of Neurochemistry, 2007, 103, 793-801.	2.1	35
13	Opioids prevent regeneration in adult mammals through inhibition of ROS production. Scientific Reports, 2018, 8, 12170.	1.6	35
14	Protocadherin 12 deficiency alters morphogenesis and transcriptional profile of the placenta. Physiological Genomics, 2008, 34, 193-204.	1.0	32
15	Translocator protein (18 kDa) is involved in primitive erythropoiesis in zebrafish. FASEB Journal, 2009, 23, 4181-4192.	0.2	28
16	Implication of type 3 deiodinase induction in zebrafish fin regeneration. General and Comparative Endocrinology, 2010, 168, 88-94.	0.8	27
17	Developmental Role of Zebrafish Protease-Activated Receptor 1 (PAR1) in the Cardio-Vascular System. PLoS ONE, 2012, 7, e42131.	1.1	21
18	Nerves, H2O2 and Shh: Three players in the game of regeneration. Seminars in Cell and Developmental Biology, 2018, 80, 65-73.	2.3	19

CHRISTINE RAMPON

#	Article	IF	CITATIONS
19	H2O2 and Engrailed 2 paracrine activity synergize to shape the zebrafish optic tectum. Communications Biology, 2020, 3, 536.	2.0	18
20	Control of brain patterning by Engrailed paracrine transfer: a new function of the Pbx interaction domain. Development (Cambridge), 2015, 142, 1840-1849.	1.2	15
21	Adenosine enhances progenitor cell recruitment and nerve growth via its A2B receptor during adult fin regeneration. Purinergic Signalling, 2014, 10, 595-602.	1.1	11
22	An early Shh–H2O2 reciprocal regulatory interaction controls the regenerative program during zebrafish fin regeneration. Journal of Cell Science, 2022, 135, .	1.2	9
23	ACTH depletion represses vascular endothelial-cadherin transcription in mouse adrenal endothelium in vivo. Journal of Molecular Endocrinology, 2005, 34, 127-137.	1.1	8
24	A method to assess the migration properties of cell-derived microparticles within a living tissue. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 863-866.	1.1	5
25	Reciprocal Regulation of Shh Trafficking and H2O2 Levels via a Noncanonical BOC-Rac1 Pathway. Antioxidants, 2022, 11, 718.	2.2	4
26	NADPH-Oxidase Derived Hydrogen Peroxide and Irs2b Facilitate Re-oxygenation-Induced Catch-Up Growth in Zebrafish Embryo. Frontiers in Endocrinology, 0, 13, .	1.5	2