
Javier Sotillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3086573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
2	Extracellular Vesicles from Parasitic Helminths Contain Specific Excretory/Secretory Proteins and Are Internalized in Intestinal Host Cells. PLoS ONE, 2012, 7, e45974.	2.5	300
3	Genome of the human hookworm Necator americanus. Nature Genetics, 2014, 46, 261-269.	21.4	166
4	Hookworm Secreted Extracellular Vesicles Interact With Host Cells and Prevent Inducible Colitis in Mice. Frontiers in Immunology, 2018, 9, 850.	4.8	159
5	Impact of Experimental Hookworm Infection on the Human Gut Microbiota. Journal of Infectious Diseases, 2014, 210, 1431-1434.	4.0	153
6	Extracellular vesicles secreted by Schistosoma mansoni contain protein vaccine candidates. International Journal for Parasitology, 2016, 46, 1-5.	3.1	147
7	Carcinogenic Liver Fluke Secretes Extracellular Vesicles That Promote Cholangiocytes to Adopt a Tumorigenic Phenotype. Journal of Infectious Diseases, 2015, 212, 1636-1645.	4.0	141
8	Characterization of <i>Trichuris muris</i> secreted proteins and extracellular vesicles provides new insights into host–parasite communication. Journal of Extracellular Vesicles, 2018, 7, 1428004.	12.2	127
9	A quantitative proteomic analysis of the tegumental proteins from Schistosoma mansoni schistosomula reveals novel potential therapeutic targets. International Journal for Parasitology, 2015, 45, 505-516.	3.1	103
10	Secreted Proteomes of Different Developmental Stages of the Gastrointestinal Nematode Nippostrongylus brasiliensis. Molecular and Cellular Proteomics, 2014, 13, 2736-2751.	3.8	88
11	Experimental hookworm infection and escalating gluten challenges are associated with increased microbial richness in celiac subjects. Scientific Reports, 2015, 5, 13797.	3.3	86
12	Carcinogenic Parasite Secretes Growth Factor That Accelerates Wound Healing and Potentially Promotes Neoplasia. PLoS Pathogens, 2015, 11, e1005209.	4.7	78
13	The protein and microRNA cargo of extracellular vesicles from parasitic helminths – current status and research priorities. International Journal for Parasitology, 2020, 50, 635-645.	3.1	73
14	Immunobiology of parasitic worm extracellular vesicles. Immunology and Cell Biology, 2018, 96, 704-713.	2.3	68
15	Programmed knockout mutation of liver fluke granulin attenuates virulence of infection-induced hepatobiliary morbidity. ELife, 2019, 8, .	6.0	61
16	Leucine Aminopeptidase Is an Immunodominant Antigen of <i>Fasciola hepatica</i> Excretory and Secretory Products in Human Infections. Vaccine Journal, 2008, 15, 95-100.	3.1	55
17	Identification of antigenic proteins from <i>Echinostoma caproni </i> (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunology, 2008, 30, 271-279.	1.5	53
18	Hookworms Evade Host Immunity by Secreting a Deoxyribonuclease to Degrade Neutrophil Extracellular Traps. Cell Host and Microbe, 2020, 27, 277-289.e6.	11.0	53

#	Article	IF	CITATIONS
19	Compounds Derived from the Bhutanese Daisy, Ajania nubigena, Demonstrate Dual Anthelmintic Activity against Schistosoma mansoni and Trichuris muris. PLoS Neglected Tropical Diseases, 2016, 10, e0004908.	3.0	49
20	The NLRP3 Inflammasome Suppresses Protective Immunity to Gastrointestinal Helminth Infection. Cell Reports, 2018, 23, 1085-1098.	6.4	48
21	Excretory/secretory proteome of the adult stage of Echinostoma caproni. Parasitology Research, 2010, 107, 691-697.	1.6	46
22	DEVELOPMENT AND PATHOLOGY OF ECHINOSTOMA CAPRONI IN EXPERIMENTALLY INFECTED MICE. Journal of Parasitology, 2007, 93, 854-859.	0.7	45
23	Vaccination of hamsters with Opisthorchis viverrini extracellular vesicles and vesicle-derived recombinant tetraspanins induces antibodies that block vesicle uptake by cholangiocytes and reduce parasite burden after challenge infection. PLoS Neglected Tropical Diseases, 2019, 13, e0007450.	3.0	43
24	Excretory/secretory products of the carcinogenic liver fluke are endocytosed by human cholangiocytes and drive cell proliferation and IL6 production. International Journal for Parasitology, 2015, 45, 773-781.	3.1	42
25	Proteomic analysis of two populations of Schistosoma mansoni-derived extracellular vesicles: 15k pellet and 120k pellet vesicles. Molecular and Biochemical Parasitology, 2020, 236, 111264.	1.1	42
26	Extracellular vesicles from parasitic helminths and their potential utility as vaccines. Expert Review of Vaccines, 2018, 17, 197-205.	4.4	40
27	Echinostoma caproni (Trematoda): Differential in vivo cytokine responses in high and low compatible hosts. Experimental Parasitology, 2011, 127, 387-397.	1.2	36
28	Suppression of mRNAs encoding CD63 family tetraspanins from the carcinogenic liver fluke Opisthorchis viverrini results in distinct tegument phenotypes. Scientific Reports, 2017, 7, 14342.	3.3	36
29	Echinostoma caproni: Kinetics of IgM, IgA and IgG subclasses in the serum and intestine of experimentally infected rats and mice. Experimental Parasitology, 2007, 116, 390-398.	1.2	31
30	Development of a Potent Wound Healing Agent Based on the Liver Fluke Granulin Structural Fold. Journal of Medicinal Chemistry, 2017, 60, 4258-4266.	6.4	31
31	In-depth proteomic characterization of Schistosoma haematobium: Towards the development of new tools for elimination. PLoS Neglected Tropical Diseases, 2019, 13, e0007362.	3.0	31
32	Proteomic analysis of <i>Strongyloides stercoralis</i> L3 larvae. Parasitology, 2010, 137, 1577-1583.	1.5	30
33	Opisthorchis viverrini Proteome and Host–Parasite Interactions. Advances in Parasitology, 2018, 102, 45-72.	3.2	30
34	The Transcriptome Analysis of Strongyloides stercoralis L3i Larvae Reveals Targets for Intervention in a Neglected Disease. PLoS Neglected Tropical Diseases, 2012, 6, e1513.	3.0	29
35	Th17 responses in Echinostoma caproni infections in hosts of high and low compatibility. Experimental Parasitology, 2011, 129, 307-311.	1.2	28
36	<i>Echinostoma caproni</i> (<scp>T</scp> rematoda): differential <i>in vivo</i> mucin expression and glycosylation in high―and low―ompatible hosts. Parasite Immunology, 2015, 37, 32-42.	1.5	27

#	Article	IF	CITATIONS
37	Exploiting Helminth–Host Interactomes through Big Data. Trends in Parasitology, 2017, 33, 875-888.	3.3	27
38	Schistosoma haematobium Extracellular Vesicle Proteins Confer Protection in a Heterologous Model of Schistosomiasis. Vaccines, 2020, 8, 416.	4.4	27
39	Uptake of Schistosoma mansoni extracellular vesicles by human endothelial and monocytic cell lines and impact on vascular endothelial cell gene expression. International Journal for Parasitology, 2020, 50, 685-696.	3.1	27
40	Revisiting the <i>Ancylostoma Caninum</i> Secretome Provides New Information on Hookworm–Host Interactions. Proteomics, 2017, 17, 1700186.	2.2	25
41	Comprehensive analysis of the secreted proteome of adult Necator americanusÂhookworms. PLoS Neglected Tropical Diseases, 2020, 14, e0008237.	3.0	25
42	Altered Protein Expression in the lleum of Mice Associated with the Development of Chronic Infections with Echinostoma caproni (Trematoda). PLoS Neglected Tropical Diseases, 2015, 9, e0004082.	3.0	22
43	Antibody trapping: A novel mechanism of parasite immune evasion by the trematode Echinostoma caproni. PLoS Neglected Tropical Diseases, 2017, 11, e0005773.	3.0	20
44	Proteomic characterization of the internalization of Opisthorchis viverrini excretory/secretory products in human cells. Parasitology International, 2017, 66, 494-502.	1.3	18
45	Liver fluke granulin promotes extracellular vesicle-mediated crosstalk and cellular microenvironment conducive to cholangiocarcinoma. Neoplasia, 2020, 22, 203-216.	5.3	18
46	Proteomic profile of Bithynia siamensis goniomphalos snails upon infection with the carcinogenic liver fluke Opisthorchis viverrini. Journal of Proteomics, 2015, 113, 281-291.	2.4	17
47	The Venom of the Spine-Bellied Sea Snake (Hydrophis curtus): Proteome, Toxin Diversity and Intraspecific Variation. International Journal of Molecular Sciences, 2017, 18, 2695.	4.1	17
48	Structural Variants of a Liver Fluke Derived Granulin Peptide Potently Stimulate Wound Healing. Journal of Medicinal Chemistry, 2018, 61, 8746-8753.	6.4	17
49	Gastrointestinal Helminth Infection Improves Insulin Sensitivity, Decreases Systemic Inflammation, and Alters the Composition of Gut Microbiota in Distinct Mouse Models of Type 2 Diabetes. Frontiers in Endocrinology, 2020, 11, 606530.	3.5	17
50	Recombinant Opisthorchis viverrini tetraspanin expressed in Pichia pastoris as a potential vaccine candidate for opisthorchiasis. Parasitology Research, 2019, 118, 3419-3427.	1.6	16
51	Coming out of the Shell: Building the Molecular Infrastructure for Research on Parasite-Harbouring Snails. PLoS Neglected Tropical Diseases, 2013, 7, e2284.	3.0	15
52	Interleukin-25 Induces Resistance Against Intestinal Trematodes. Scientific Reports, 2016, 6, 34142.	3.3	15
53	RNA-Seq Reveals Infection-Induced Gene Expression Changes in the Snail Intermediate Host of the Carcinogenic Liver Fluke, Opisthorchis viverrini. PLoS Neglected Tropical Diseases, 2014, 8, e2765.	3.0	14
54	Recent advances in proteomic applications for schistosomiasis research: potential clinical impact. Expert Review of Proteomics, 2017, 14, 171-183.	3.0	14

#	Article	IF	CITATIONS
55	Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis: a biomarker identification study. Lancet Microbe, The, 2021, 2, e617-e626.	7.3	14
56	A QUANTITATIVE APPROACH TO THE EXPERIMENTAL TRANSMISSION SUCCESS OF ECHINOSTOMA FRIEDI (TREMATODA: ECHINOSTOMATIDAE) IN RATS. Journal of Parasitology, 2006, 92, 16-20.	0.7	13
57	Extracellular vesicles as a target for the development of anti-helminth vaccines. Emerging Topics in Life Sciences, 2017, 1, 659-665.	2.6	12
58	Polypyridylruthenium(II) complexes exert in vitro and in vivo nematocidal activity and show significant inhibition of parasite acetylcholinesterases. International Journal for Parasitology: Drugs and Drug Resistance, 2018, 8, 1-7.	3.4	12
59	Differential Protein Expression in the Hemolymph of Bithynia siamensis goniomphalos Infected with Opisthorchis viverrini. PLoS Neglected Tropical Diseases, 2016, 10, e0005104.	3.0	12
60	Transgenesis in parasitic helminths: a brief history and prospects for the future. Parasites and Vectors, 2022, 15, 110.	2.5	12
61	Echinostoma caproni: Differential tegumental responses to growth in compatible and less compatible hosts. Experimental Parasitology, 2010, 125, 304-309.	1.2	11
62	Differential expression and glycosylation of proteins in the rat ileal epithelium in response to Echinostoma caproni infection. Journal of Proteomics, 2014, 101, 169-178.	2.4	11
63	The effect of glycosylation of antigens on the antibody responses against <i>Echinostoma caproni</i> (Trematoda: Echinostomatidae). Parasitology, 2014, 141, 1333-1340.	1.5	11
64	Definitive host influences the proteomic profile of excretory/secretory products of the trematode Echinostoma caproni. Parasites and Vectors, 2016, 9, 185.	2.5	10
65	Set up of an in vitro model to study early host-parasite interactions between newly excysted juveniles of Fasciola hepatica and host intestinal cells using a quantitative proteomics approach. Veterinary Parasitology, 2020, 278, 109028.	1.8	10
66	Rodent Models for the Study of Soil-Transmitted Helminths: A Proteomics Approach. Frontiers in Cellular and Infection Microbiology, 2021, 11, 639573.	3.9	10
67	Recognition Pattern of the Fasciola hepatica Excretome/Secretome during the Course of an Experimental Infection in Sheep by 2D Immunoproteomics. Pathogens, 2021, 10, 725.	2.8	10
68	Silencing of Opisthorchis viverrini Tetraspanin Gene Expression Results in Reduced Secretion of Extracellular Vesicles. Frontiers in Cellular and Infection Microbiology, 2022, 12, 827521.	3.9	10
69	Proteomic analysis of the pinworm Syphacia muris (Nematoda: Oxyuridae), a parasite of laboratory rats. Parasitology International, 2012, 61, 561-564.	1.3	9
70	Intestinal IFN-γ production is associated with protection from clinical signs, but not with elimination of worms, in Echinostoma caproni infected-mice. Parasitology Research, 2014, 113, 2037-2045.	1.6	9
71	Changes in protein expression after treatment with Ancylostoma caninum excretory/secretory products in a mouse model of colitis. Scientific Reports, 2017, 7, 41883.	3.3	8
72	Effects of dietary intake of garlic on intestinal trematodes. Parasitology Research, 2017, 116, 2119-2129.	1.6	8

#	Article	IF	CITATIONS
73	Proteomic approaches to drive advances in helminth extracellular vesicle research. Molecular Immunology, 2021, 131, 1-5.	2.2	8
74	Resistance against Echinostoma caproni (Trematoda) secondary infections in mice is not dependent on the ileal protein production. Journal of Proteomics, 2016, 140, 37-47.	2.4	7
75	Partial protection with a chimeric tetraspanin-leucine aminopeptidase subunit vaccine against Opisthorchis viverrini infection in hamsters. Acta Tropica, 2020, 204, 105355.	2.0	7
76	Data set from the proteomic analysis of Bithynia siamensis goniomphalos snails upon infection with the carcinogenic liver fluke Opisthorchis viverrini. Data in Brief, 2015, 2, 16-20.	1.0	6
77	Novel cholinesterase paralogs of Schistosoma mansoni have perceived roles in cholinergic signalling and drug detoxification and are essential for parasite survival. PLoS Pathogens, 2019, 15, e1008213.	4.7	6
78	Proteomic identification of the contents of small extracellular vesicles from in vivo Plasmodium yoelii infection. International Journal for Parasitology, 2022, 52, 35-45.	3.1	6
79	Administration of Hookworm Excretory/Secretory Proteins Improves Glucose Tolerance in a Mouse Model of Type 2 Diabetes. Biomolecules, 2022, 12, 637.	4.0	6
80	Gut-microbiota-derived extracellular vesicles: Overlooked mediators in host–helminth interactions?. Trends in Parasitology, 2021, 37, 690-693.	3.3	5
81	Proteomic Analysis of Schistosoma mansoni Tegumental Proteins. Methods in Molecular Biology, 2020, 2151, 85-92.	0.9	5
82	Insights into the functional expansion of the astacin peptidase family in parasitic helminths. International Journal for Parasitology, 2022, 52, 243-251.	3.1	5
83	Characterisation of tetraspanins from Schistosoma haematobium and evaluation of their potential as novel diagnostic markers. PLoS Neglected Tropical Diseases, 2022, 16, e0010151.	3.0	5
84	β lucan receptors on ILâ€4 activated macrophages are required for hookworm larvae recognition and trapping. Immunology and Cell Biology, 2022, 100, 223-234.	2.3	5
85	Zygocotyle lunata: Proteomic analysis of the adult stage. Experimental Parasitology, 2011, 128, 133-137.	1.2	4
86	Adaptation of the secretome of Echinostoma caproni may contribute to parasite survival in a Th1 milieu. Parasitology Research, 2018, 117, 947-957.	1.6	4
87	Trematode Genomics and Proteomics. Advances in Experimental Medicine and Biology, 2019, 1154, 411-436.	1.6	4
88	Foodborne trematodes: old foes, new kids on the block and research perspectives for control and understanding host–parasite interactions. Parasitology, 2022, 149, 1257-1261.	1.5	4
89	Immunomics-Guided Antigen Discovery for Praziquantel-Induced Vaccination in Urogenital Human Schistosomiasis. Frontiers in Immunology, 2021, 12, 663041.	4.8	3
90	Recent advances on the immunobiology of Bithynia spp. hosts of Opisthorchis viverrini. Developmental and Comparative Immunology, 2020, 102, 103460.	2.3	2

#	Article	IF	CITATIONS
91	Analysis of the Tegument of <i>Zygocotyle lunata</i> (Trematoda: Paramphistomidae) Adults by Scanning Electron Microscopy. Journal of Parasitology, 2012, 98, 1287-1290.	0.7	1
92	Cellular immune responses in Echinostoma caproni experimentally infected mice. Parasitology Research, 2012, 110, 1033-1036.	1.6	1
93	MS-Based Extracellular Vesicle (EVs) Analysis: An Application to Helminth-Secreted EVs. Methods in Molecular Biology, 2022, 2420, 11-20.	0.9	1