
Vladimir Turkevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3085446/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	cBN-based cutting tools with niobium compounds as a binder phase Procedia CIRP, 2021, 101, 254-257.	1.0	1
2	Dielectric characteristics of pressureless sintered AlN-based composites in the 3–37ÂGHz frequency range. Journal of Materials Science: Materials in Electronics, 2021, 32, 2524-2534.	1.1	7
3	On chemical and diffusional interactions between PCBN and superalloy Inconel 718: Imitational experiments. Journal of the European Ceramic Society, 2019, 39, 2658-2665.	2.8	24
4	The Influence of SiC and Al2O3 Whiskers on the Properties of Whisker-Reinforced cBN-Based Composites. Journal of Superhard Materials, 2019, 41, 377-387.	0.5	7
5	Physical properties of Ga-Fe-N system relevant for crystallization of GaN – Initial studies. Journal of Crystal Growth, 2019, 507, 77-86.	0.7	1
6	Melting of tetrahedrally bonded semiconductors: "anomaly―of the phase diagram of GaN?. Journal of Crystal Growth, 2019, 505, 5-9.	0.7	7
7	Fabrication and luminescent properties of (Y0.99Eu0.01)2O3 transparent nanostructured ceramics. Optical Materials, 2018, 78, 285-291.	1.7	3
8	Phase Diagram of the B–BN System at Pressures up to 24 GPa: Experimental Study and Thermodynamic Analysis. Journal of Physical Chemistry C, 2018, 122, 8505-8509.	1.5	13
9	Structure and Current-Voltage Characteristics of Islet Gold Films on High-Heat Conducting Pressureless Sintered AlN Ceramics. Journal of Superhard Materials, 2018, 40, 432-434.	0.5	7
10	Investigation of the mechanical properties and cutting performance of cBN-based cutting tools with Cr3C2 binder phase Procedia CIRP, 2018, 72, 1433-1438.	1.0	12
11	Superhard pcBN materials with chromium compounds as a binder. Procedia Manufacturing, 2018, 25, 322-329.	1.9	13
12	On the Achievements of the Bakul Institute for Superhard Materials in the Field of Synthesis and Sintering of Superhard Materials for the Period of the Activity in the Composition of the National Academy of Science of Ukraine. Journal of Superhard Materials, 2018, 40, 299-303.	0.5	1
13	The Influence of in situ Formed TiB2–VB2 Borides on the Structure and Properties of Hot-Pressed B4C–(TiH2–VC) Ceramic System. Journal of Superhard Materials, 2018, 40, 365-373.	0.5	2
14	Corrosion Resistance of the Hot-Pressed B4C–VC Ceramic System. Journal of Superhard Materials, 2018, 40, 222-225.	0.5	0
15	The Influence of VC–Al Additive on Wear Resistance of cBN-based Composites. Journal of Superhard Materials, 2018, 40, 226-227.	0.5	10
16	Superhard pcBN tool materials with Ti3SiC2 MAX-phase binder: Structure, properties, application. Journal of Superhard Materials, 2017, 39, 155-165.	0.5	5
17	Thermodynamic calculation of the phase diagram for the Al–B–C system at pressure 7.7 GPa. Journal of Superhard Materials, 2016, 38, 423-426.	0.5	2
18	Diffusion of oxygen in bulk GaN crystals at high temperature and at high pressure. Journal of Crystal Growth. 2016, 449, 35-42.	0.7	8

VLADIMIR TURKEVICH

#	Article	IF	CITATIONS
19	Thermodynamic calculation of the phase diagram of the Si–C system up to 8 GPa. Journal of Superhard Materials, 2016, 38, 145-147.	0.5	3
20	Phase diagram of the B–B2O3 system at pressures to 24 GPa. Journal of Superhard Materials, 2016, 38, 216-218.	0.5	8
21	The challenge of decomposition and melting of gallium nitride under high pressure and high temperature. Journal of Physics and Chemistry of Solids, 2015, 85, 138-143.	1.9	34
22	HP-HT sintering, microstructure, and properties of B6O- and TiC-containing composites based on cBN. Journal of Superhard Materials, 2015, 37, 143-154.	0.5	10
23	High-Pressure Phase Diagrams of the Systems Containing Carbon and BN. , 2014, , 35-57.		Ο
24	Thermodynamic calculation of the Al-B system at pressures to 8 GPa. Journal of Superhard Materials, 2014, 36, 437-439.	0.5	2
25	Transformation-assisted consolidation of Y2O3:Eu3+ nanospheres as a concept to optical nanograined ceramics. Ceramics International, 2014, 40, 3561-3569.	2.3	18
26	Thermodynamic calculation of the B-C system at pressures to 24 GPa. Journal of Superhard Materials, 2014, 36, 358-360.	0.5	1
27	Studies of the oxidation stability, mechanical characteristics of materials based on max phases of the Ti-Al-(C, N) systems, and of the possibility of their use as tool bonds and materials for polishing. Journal of Superhard Materials, 2014, 36, 9-17.	0.5	18
28	Phase Equilibria in the B–BN–B ₂ O ₃ System at 5 GPa. Journal of Physical Chemistry C, 2013, 117, 18642-18647.	1.5	13
29	Comparative study of the luminescence of Y3Al5O12 nanoceramics and single crystals under excitation by synchrotron radiation. Optical Materials, 2013, 35, 2049-2052.	1.7	17
30	The crystal structure of aluminum diborides synthesized under high pressures and temperatures. Journal of Superhard Materials, 2012, 34, 299-304.	0.5	1
31	An approach to Y2O3:Eu3+ optical nanostructured ceramics. Journal of the European Ceramic Society, 2012, 32, 257-260.	2.8	21
32	Effect of grain size on the strength of Y3Al5O12 optical ceramics. Inorganic Materials, 2011, 47, 1160-1167.	0.2	2
33	Formation of superhard phases in the Cdiam-AlB12 and Cdiam-AlB2 systems at high pressures and temperatures. Journal of Superhard Materials, 2011, 33, 70-72.	0.5	Ο
34	Phase formation in the Al-B-C ternary system at high pressures and temperatures. Journal of Superhard Materials, 2011, 33, 285-292.	0.5	3
35	Effects of High Pressure on the Physical Properties of MgB2. Journal of Superconductivity and Novel Magnetism, 2011, 24, 137-150.	0.8	8
36	Y3Al5O12 translucent nanostructured ceramics—Obtaining and optical properties. Ceramics International, 2011, 37, 2477-2484.	2.3	21

VLADIMIR TURKEVICH

#	Article	IF	CITATIONS
37	High-pressure synthesis of MnO–ZnO solid solutions with rock salt structure: <i>in situ</i> X-ray diffraction studies. High Pressure Research, 2011, 31, 43-47.	0.4	7
38	Phase Diagram of the Bâ^'BN System at 5 GPa. Journal of Physical Chemistry B, 2010, 114, 5819-5822.	1.2	27
39	On the problem of the phase relations in the B-BN system at high pressures and temperatures. Journal of Superhard Materials, 2009, 31, 1-6.	0.5	17
40	Thermodynamic calculation of the melting diagram of the Mg-MgO-B system at a pressure of 2 GPa. Journal of Superhard Materials, 2009, 31, 78-81.	0.5	0
41	Production of the Y3Al5O12 transparent nanostructured ceramics. Journal of Superhard Materials, 2009, 31, 252-259.	0.5	10
42	Phase diagram of the Mg–B system at 2ÂGPa and peculiarities of high-pressure manufacture of MgB ₂ -based blocks with high critical currents. High Pressure Research, 2009, 29, 87-92.	0.4	5
43	Formation of Higher Borides During High-Pressure Synthesis and Sintering of Magnesium Diboride and Their Positive Effect on Pinning and Critical Current Density. IEEE Transactions on Applied Superconductivity, 2009, 19, 2780-2783.	1.1	15
44	Phase Diagram of the Bâ^'B2O3 System at 5 GPa: Experimental and Theoretical Studies. Journal of Physical Chemistry B, 2008, 112, 6683-6687.	1.2	44
45	High-pressure formation of MgxZn1â^'xO solid solutions with rock salt structure. Solid State Communications, 2006, 138, 534-537.	0.9	13
46	Mechanism of Cubic Boron Nitride Formation and Phase Equilibria in the Mg—BN and AlN—BN Systems. , 2005, , 309-318.		2
47	Kinetics of the graphite?diamond transformation in aqueous fluid determined by in-situ X-ray diffractions at high pressures and temperatures. Physics and Chemistry of Minerals, 2004, 31, 261-268.	0.3	13
48	Kinetics and mechanism of cubic boron nitride formation in the AlN–BN system at 6 GPa. Diamond and Related Materials, 2004, 13, 64-68.	1.8	10
49	On the cubic boron nitride crystallization in fluid systems. Physical Chemistry Chemical Physics, 2004, 6, 3900.	1.3	7
50	Synchrotron radiation study of MgB2formation under high pressure. Superconductor Science and Technology, 2003, 16, 1147-1151.	1.8	24
51	Kinetics of Diamond Crystallization from the Melt of the Feâ^'Niâ^'C System. Journal of Physical Chemistry B, 2002, 106, 6634-6637.	1.2	45
52	Kinetics of diamond spontaneous crystallization from the melt of the Fe–Al–C system at 6.5 GPa. Diamond and Related Materials, 2002, 11, 1769-1773.	1.8	20
53	Phase diagrams and synthesis of cubic boron nitride. Journal of Physics Condensed Matter, 2002, 14, 10963-10968.	0.7	23
54	In situ studies of boron nitride crystallization from BN solutions in supercritical N–H fluid at high pressures and temperatures. Physical Chemistry Chemical Physics, 2002, 4, 5386-5393.	1.3	20

VLADIMIR TURKEVICH

#	Article	IF	CITATIONS
55	hBN ↔ cBN equilibrium line calculated from experimental data on the cBN-to-hBN transformation to 1.4 GPa. High Pressure Research, 1999, 16, 179-185.	0.4	6
56	Refined Phase Diagram of Boron Nitride. Journal of Physical Chemistry B, 1999, 103, 2903-2905.	1.2	159
57	On Nucleation of Cubic Boron Nitride in the BNâ^'MgB2 System. Journal of Physical Chemistry B, 1999, 103, 8137-8140.	1.2	33
58	Kinetics of cBN crystallization in the Li3N-BN system at 6.6 GPa. Diamond and Related Materials, 1998, 7, 43-46.	1.8	18
59	High pressure phase equilibria in the Li3N-BN system: in situ studies. Materials Letters, 1997, 32, 179-184.	1.3	30
60	Phase Stability of Graphitelike BC ₄ N up to 2100 K and 7 GPa. Journal of the American Ceramic Society, 1997, 80, 3229-3232.	1.9	22
61	Synthesis of Boron Nitride by Selfâ€Propagating Reactions at High Pressure. Journal of the American Ceramic Society, 1996, 79, 2798-2800.	1.9	11
62	Thermophysical devices for high temperature measurements. Journal of Thermal Analysis, 1995, 44, 1067-1071.	0.7	3
63	High pressure influence on the phase diagram construction of 3-d transition metals with carbon systems. High Pressure Research, 1995, 14, 175-180.	0.4	16
64	Thermoanalytical study of the polymorphic transformation of cubic into graphite-like boron nitride. Journal of Thermal Analysis, 1992, 38, 1181-1188.	0.7	22
65	Effect of the dispersion of silicon carbide on the nature of interaction of the components of the Ti-SiC system. Soviet Powder Metallurgy and Metal Ceramics (English Translation of Poroshkovaya) Tj ETQq1 1 C).78041314 r 	gB@/Overloci
66	On the diathermal calorimetry theory. Thermochimica Acta, 1985, 92, 249-252.	1.2	3

On the diathermal calorimetry theory. Thermochimica Acta, 1985, 92, 249-252. 66

3