Jianing Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3085394/publications.pdf

Version: 2024-02-01

623734 610901 33 558 14 24 h-index citations g-index papers 33 33 33 293 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A study on wear resistance and microcrack of the Ti3Al/TiAl + TiC ceramic layer deposited by laser cladding on Ti–6Al–4V alloy. Applied Surface Science, 2010, 257, 1550-1555.	6.1	90
2	Influence of Cu on microstructure and wear resistance of TiC/TiB/TiN reinforced composite coating fabricated by laser cladding. Materials Chemistry and Physics, 2012, 133, 741-745.	4.0	52
3	Surface modification of titanium alloy with laser cladding RE oxides reinforced Ti3Al–matrix composites. Composites Part B: Engineering, 2012, 43, 1207-1212.	12.0	45
4	Microstructure and physical performance of laser-induction nanocrystals modified high-entropy alloy composites on titanium alloy. Materials and Design, 2017, 117, 363-370.	7.0	43
5	Microstructure and wear performance enhancement of carbon nanotubes reinforced composite coatings fabricated by laser cladding on titanium alloy. Optics and Laser Technology, 2021, 139, 106957.	4.6	30
6	Atomic structure revolution and excellent performance improvement of composites induced by laser ultrafine-nano technology. Composites Part B: Engineering, 2020, 185, 107792.	12.0	27
7	Microstructures and wear properties of YPSZ/CeO2 reinforced composites deposited by laser cladding. Composites Part B: Engineering, 2012, 43, 896-901.	12.0	26
8	Mechanical property and characterization of 7A04-T6 aluminum alloys bonded by friction stir welding. Journal of Manufacturing Processes, 2020, 52, 263-269.	5.9	26
9	Microstructure evolution, texture and laser surface HEACs of Al-Mg-Si alloy for light automobile parts. Materials Characterization, 2020, 160, 110093.	4.4	25
10	Laser nanocomposites-reinforcing/manufacturing of SLM 18Ni300 alloy under aging treatment. Materials Characterization, 2019, 153, 69-78.	4.4	23
11	Laser nano-technology of light materials: Precision and opportunity. Optics and Laser Technology, 2021, 139, 106988.	4.6	20
12	Physical Properties and Formation Mechanism of Copper/Glass Modified Laser Nanocrystals-Amorphous Reinforced Coatings. Journal of Physical Chemistry C, 2013, 117, 4568-4573.	3.1	19
13	Laser deposition-additive manufacturing of ceramics/nanocrystalline intermetallics reinforced microlaminates. Optics and Laser Technology, 2019, 117, 158-164.	4.6	18
14	Surface reinforcements of TA15 titanium alloy with laser induced Co base multiphase composites. Optics and Laser Technology, 2020, 132, 106480.	4.6	17
15	PHASE CONSTITUENTS AND MICROSTRUCTURE OF Ti₃Al/Fe₃Al + TiN/TiB₂ COMPOSITE COATING ON TITANIUM ALLOY. Surface Review and Letters, 2011, 18, 103-108.	1.1	13
16	Influence of Al2O3–Y2O3 and Ce–Al–Ni amorphous alloy on physical properties of laser synthetic composite coatings on titanium alloys. Surface and Coatings Technology, 2014, 247, 55-60.	4.8	13
17	Microstructures evolution and physical properties of laser induced NbC modified nanocrystalline composites. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 94, 1-6.	2.7	13
18	Laser/argon-arc strengthening of titanium alloy surface with Deloro matrix composites. Optics and Laser Technology, 2020, 123, 105911.	4.6	12

#	Article	IF	CITATIONS
19	Effect of SiC/nanoâ€CeO ₂ on wear resistance and microstructures of Ti ₃ Al∫γâ€Ni matrix laserâ€cladded composite coating on Ti–6Al–4V alloy. Surface and Interface Analysis, 2012, 44, 559-564.	1.8	11
20	Microstructure performance enhancement of Si ₃ N ₄ reinforced laser clad KF110 base composite coatings. International Journal of Applied Ceramic Technology, 2022, 19, 409-414.	2.1	10
21	Effect of <scp><scp>ZrO₂</scp></scp> (<scp>YPSZ</scp>) on Microstructure Characteristic and Wear Resistance of the <scp><scp>Ti₃Al/TiC</scp></scp> Laserâ€Cladded Ceramic Layer on Titanium Alloy. International Journal of Applied Ceramic Technology, 2012, 9, 947-952.	2.1	7
22	The effect of solution and aging treatments on the microstructure and mechanical properties of a selective laser melted CoCrMo alloy. Journal of Materials Science, 2022, 57, 6445-6459.	3.7	5
23	Laser fabrication nanocrystalline coatings using simultaneous powders/wire feed. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 81, 44-48.	2.7	4
24	Laser reinforcement of light industrial part surface with synthetic amorphous/nanocrystalline composites. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	2
25	Laser depositionâ€additive manufacturing of Ti–B/TiC ceramics reinforced microlaminates. International Journal of Applied Ceramic Technology, 2019, 16, 1314-1320.	2.1	2
26	AMORPHOUS/NANOCRYSTALLIZATION OF TiN-TiB2 REINFORCED LASER CLAD COMPOSITES. Surface Review and Letters, 2019, 26, 1950057.	1.1	2
27	Surface modification of Ti alloys with WC-TiB ₂ -reinforced laser composite coatings. Science and Engineering of Composite Materials, 2016, 23, 737-741.	1.4	1
28	MICROSTRUCTURE PERFORMANCE AND SYNTHESIS OF THE ARGON-ARC CLAD COBALT BASE COMPOSITE COATING. Surface Review and Letters, 2019, 26, 1850189.	1.1	1
29	WEAR PROPERTIES AND CHARACTERIZATION OF LASER-DEPOSITED NI-BASE COMPOSITES ON 304 STAINLESS STEEL. Surface Review and Letters, 2020, 27, 1950219.	1.1	1
30	Microstructure Performance and Formation Mechanism of Carbon Nanotubes Reinforced Laser Composites. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1591-1595.	0.6	0
31	MICROSTRUCTURES AND WEAR RESISTANCE OF THE ARGON ARC CLAD NICKEL-BASED COMPOSITES ON TITANIUM ALLOY. Surface Review and Letters, 2019, 26, 1950047.	1.1	0
32	LASER SURFACE REINFORCEMENT OF THE TI/Al TIG WELDED JOINT. Surface Review and Letters, 2020, 27, 2050016.	1.1	0
33	ARGON-ARC CLADDING OF Q235 LOW-CARBON STEEL BY CO BASE ALLOY DEPOSITION. Surface Review and Letters, 2021, 28, 2150017.	1.1	0