
Marta Miola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3085029/publications.pdf Version: 2024-02-01

Μάρτα Μιοία

#	Article	IF	CITATIONS
1	Surface functionalization of bioactive glasses and hydroxyapatite with polyphenols from organic red grape pomace. Journal of the American Ceramic Society, 2022, 105, 1697-1710.	3.8	11
2	Magnetoâ€plasmonic heterodimers: Evaluation of different synthesis approaches. Journal of the American Ceramic Society, 2022, 105, 1276.	3.8	3
3	Synthesis and characterization of sol-gel bioactive glass nanoparticles doped with boron and copper. Ceramics International, 2022, 48, 13706-13718.	4.8	20
4	<i>In situ</i> reduction of Ag on magnetic nanoparticles with gallic acid: effect of the synthesis parameters on morphology. Nanomedicine, 2022, 17, 499-511.	3.3	2
5	Angiogenesis induction by bioactive glasses and glass-ceramics. , 2022, , 203-226.		0
6	Tellurium: A new active element for innovative multifunctional bioactive glasses. Materials Science and Engineering C, 2021, 123, 111957.	7.3	17
7	The effect of magnesium on bioactivity, rheology and biology behaviors of injectable bioactive glass-gelatin-3-glycidyloxypropyl trimethoxysilane nanocomposite-paste for small bone defects repair. Ceramics International, 2021, 47, 12526-12536.	4.8	9
8	Synthesis and characterization of magnetic and antibacterial nanoparticles as filler in acrylic cements for bone cancer and comorbidities therapy. Ceramics International, 2021, 47, 17633-17643.	4.8	8
9	Electrophoretic deposition of composite coatings based on alginate matrix/45S5 bioactive glass particles doped with B, Zn or Sr. Surface and Coatings Technology, 2021, 418, 127183.	4.8	13
10	Melt-derived copper-doped ferrimagnetic glass-ceramic for tumor treatment. Ceramics International, 2021, 47, 31749-31755.	4.8	3
11	Bioactive materials: In vitro investigation of different mechanisms of hydroxyapatite precipitation. Acta Biomaterialia, 2020, 102, 468-480.	8.3	115
12	Enhancing Mechanical Properties and Biological Performances of Injectable Bioactive Glass by Gelatin and Chitosan for Bone Small Defect Repair. Biomedicines, 2020, 8, 616.	3.2	22
13	The mechanical and chemical stability of the interfaces in bioactive materials: The substrate-bioactive surface layer and hydroxyapatite-bioactive surface layer interfaces. Materials Science and Engineering C, 2020, 116, 111238.	7.3	27
14	Competitive Surface Colonization of Antibacterial and Bioactive Materials Doped with Strontium and/or Silver Ions. Nanomaterials, 2020, 10, 120.	4.1	38
15	Antibacterial and Bioactive Composite Bone Cements. Current Materials Science, 2020, 12, 144-153.	0.4	7
16	In situ chemical and physical reduction of copper on bioactive glass surface. Applied Surface Science, 2019, 495, 143559.	6.1	11
17	Tumor Targeting by Monoclonal Antibody Functionalized Magnetic Nanoparticles. Nanomaterials, 2019, 9, 1575.	4.1	26
18	Electrospun Filaments Embedding Bioactive Glass Particles with Ion Release and Enhanced Mineralization. Nanomaterials, 2019, 9, 182.	4.1	17

MARTA MIOLA

#	Article	IF	CITATIONS
19	Antibacterial nanostructured composite coating on high performance Vectranâ,,¢ fabric for aerospace structures. Surface and Coatings Technology, 2019, 373, 47-55.	4.8	19
20	Bioactive superparamagnetic nanoparticles for multifunctional composite bone cements. Ceramics International, 2019, 45, 14533-14545.	4.8	10
21	Magnetoplasmonic nanoparticles for photothermal therapy. Nanotechnology, 2019, 30, 255705.	2.6	21
22	PMMA-Based Bone Cements and the Problem of Joint Arthroplasty Infections: Status and New Perspectives. Materials, 2019, 12, 4002.	2.9	62
23	Class-ceramics for cancer treatment: So close, or yet so far?. Acta Biomaterialia, 2019, 83, 55-70.	8.3	85
24	Fe-doped bioactive glass-derived scaffolds produced by sol-gel foaming. Materials Letters, 2019, 235, 207-211.	2.6	47
25	Multifunctional Bioactive Glasses and Glass-Ceramics: Beyond â€~Traditional' Bioactivity. , 2019, , 35-67.		1
26	Synthesis and characterization of silicaâ€coated superparamagnetic iron oxide nanoparticles and interaction with pancreatic cancer cells. International Journal of Applied Ceramic Technology, 2018, 15, 947-960.	2.1	7
27	Bioactive solâ€gel glasses: Processing, properties, and applications. International Journal of Applied Ceramic Technology, 2018, 15, 841-860.	2.1	124
28	Surface modification of titanium surfaces through a modified oxide layer and embedded silver nanoparticles: Effect of reducing/stabilizing agents on precipitation and properties of the nanoparticles. Surface and Coatings Technology, 2018, 344, 177-189.	4.8	25
29	Fe-Doped Sol-Gel Glasses and Glass-Ceramics for Magnetic Hyperthermia. Materials, 2018, 11, 173.	2.9	45
30	PPARs are mediators of anti-cancer properties of superparamagnetic iron oxide nanoparticles (SPIONs) functionalized with conjugated linoleic acid. Chemico-Biological Interactions, 2018, 292, 9-14.	4.0	13
31	Copper-Doped Bioactive Glass as Filler for PMMA-Based Bone Cements: Morphological, Mechanical, Reactivity, and Preliminary Antibacterial Characterization. Materials, 2018, 11, 961.	2.9	38
32	Biocompatibility versus peritoneal mesothelial cells of polypropylene prostheses for hernia repair, coated with a thin silica/silver layer. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 1586-1593.	3.4	23
33	Composites bone cements with different viscosities loaded with a bioactive and antibacterial glass. Journal of Materials Science, 2017, 52, 5133-5146.	3.7	19
34	Innovative superparamagnetic iron-oxide nanoparticles coated with silica and conjugated with linoleic acid: Effect on tumor cell growth and viability. Materials Science and Engineering C, 2017, 76, 439-447.	7.3	18
35	Antimicrobial functionalization of cotton fabric with silver nanoclusters/silica composite coating via RF co-sputtering technique. Cellulose, 2017, 24, 2331-2345.	4.9	75
36	Nanogrooves and keratin nanofibers on titanium surfaces aimed at driving gingival fibroblasts alignment and proliferation without increasing bacterial adhesion. Materials Science and Engineering C, 2017, 76, 1-12.	7.3	66

Marta Miola

#	Article	IF	CITATIONS
37	Multifunctional ferrimagnetic glass–ceramic for the treatment of bone tumor and associated complications. Journal of Materials Science, 2017, 52, 9192-9201.	3.7	11
38	Characterization of antibacterial silver nanocluster/silica composite coating on high performance Kevlar® textile. Surface and Coatings Technology, 2017, 321, 438-447.	4.8	32
39	Polypropylene prostheses coated with silver nanoclusters/silica coating obtained by sputtering: Biocompatibility and antibacterial properties. Surface and Coatings Technology, 2017, 319, 326-334.	4.8	18
40	Magnetite and silica-coated magnetite nanoparticles are highly biocompatible on endothelial cells <i>in vitro</i> . Biomedical Physics and Engineering Express, 2017, 3, 025015.	1.2	11
41	Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer. Materials Science and Engineering C, 2017, 77, 342-351.	7.3	29
42	In vitro biocompatibility of a ferrimagnetic glass-ceramic for hyperthermia application. Materials Science and Engineering C, 2017, 73, 778-787.	7.3	31
43	Composite bone cements for hyperthermia: modeling and characterization of magnetic, calorimetric and in vitro heating properties. Ceramics International, 2017, 43, 4831-4840.	4.8	13
44	Antibacterial silver nanocluster/silica composite coatings on stainless steel. Applied Surface Science, 2017, 396, 1546-1555.	6.1	34
45	Reductant-free synthesis of magnetoplasmonic iron oxide-gold nanoparticles. Ceramics International, 2017, 43, 15258-15265.	4.8	21
46	Tumor targeting by lentiviral vectors combined with magnetic nanoparticles in mice. Acta Biomaterialia, 2017, 59, 303-316.	8.3	33
47	In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols. Applied Surface Science, 2017, 396, 461-470.	6.1	49
48	Bioactive and Antibacterial Glass Powders Doped with Copper by Ion-Exchange in Aqueous Solutions. Materials, 2016, 9, 405.	2.9	30
49	Bioactive Glasses with Low Ca/P Ratio and Enhanced Bioactivity. Materials, 2016, 9, 226.	2.9	24
50	Antibacterial Bioglassâ€Derived Scaffolds: Innovative Synthesis Approach and Characterization. International Journal of Applied Glass Science, 2016, 7, 238-247.	2.0	30
51	Glass coatings on zirconia with enhanced bioactivity. Journal of the European Ceramic Society, 2016, 36, 3201-3210.	5.7	24
52	Physico-chemical and biological studies on three-dimensional porous silk/spray-dried mesoporous bioactive glass scaffolds. Ceramics International, 2016, 42, 13761-13772.	4.8	18
53	Novel antibacterial ocular prostheses: Proof of concept and physico-chemical characterization. Materials Science and Engineering C, 2016, 60, 467-474.	7.3	29
54	Enhanced apatite precipitation on a biopolymer-coated bioactive glass. Biomedical Glasses, 2015, 1, .	2.4	2

MARTA MIOLA

#	Article	IF	CITATIONS
55	Electrophoretic Deposition of Chitosan/45S5 Bioactive Glass Composite Coatings Doped with Zn and Sr. Frontiers in Bioengineering and Biotechnology, 2015, 3, 159.	4.1	59
56	Structure optimisation and biological evaluation of bone scaffolds prepared by co-sintering of silicate and phosphate glasses. Advances in Applied Ceramics, 2015, 114, S48-S55.	1.1	11
57	Antibacterial and bioactive composite bone cements containing surface silver-doped glass particles. Biomedical Materials (Bristol), 2015, 10, 055014.	3.3	31
58	A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. Journal of Materials Science: Materials in Medicine, 2015, 26, 115.	3.6	275
59	On the mechanism of apatite-induced precipitation on 45S5 glass pellets coated with a natural-derived polymer. Applied Surface Science, 2015, 353, 137-149.	6.1	20
60	Micro- and nano-textured, hydrophilic and bioactive titanium dental implants. Surface and Coatings Technology, 2015, 276, 374-383.	4.8	79
61	Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility. Materials Science and Engineering C, 2015, 53, 95-103.	7.3	42
62	Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic. Part I: Morphological, mechanical and calorimetric characterization. Journal of Biomaterials Applications, 2014, 29, 254-267.	2.4	30
63	Biomaterials for orbital implants and ocular prostheses: Overview and future prospects. Acta Biomaterialia, 2014, 10, 1064-1087.	8.3	87
64	In vitro study of manganese-doped bioactive glasses for bone regeneration. Materials Science and Engineering C, 2014, 38, 107-118.	7.3	105
65	Antibiotic-free composite bone cements with antibacterial and bioactive properties. A preliminary study. Materials Science and Engineering C, 2014, 43, 65-75.	7.3	39
66	Chemical, mechanical and antibacterial properties of silver nanocluster/silica composite coated textiles for safety systems and aerospace applications. Applied Surface Science, 2014, 317, 131-139.	6.1	22
67	Silver nanocluster-silica composite antibacterial coatings for materials to be used in mobile telephones. Applied Surface Science, 2014, 313, 107-115.	6.1	26
68	Antibacterial and bioactive nanostructured titanium surfaces for bone integration. Applied Surface Science, 2014, 311, 279-291.	6.1	91
69	Antibiotic-loaded acrylic bone cements: An in vitro study on the release mechanism and its efficacy. Materials Science and Engineering C, 2013, 33, 3025-3032.	7.3	29
70	Antibiotic loading on bioactive glasses and glass-ceramics: An approach to surface modification. Journal of Biomaterials Applications, 2013, 28, 308-319.	2.4	17
71	Silver Nanocluster/Silica Composite Coatings Obtained by Sputtering for Antibacterial Applications. Engineering Materials, 2013, , 225-247.	0.6	4
72	Effect of thermal treatments on sputtered silver nanocluster/silica composite coatings on soda-lime glasses: ionic exchange and antibacterial activity. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	22

MARTA MIOLA

#	Article	IF	CITATIONS
73	Silver nanocluster/silica composite coatings obtained by sputtering for antibacterial applications. IOP Conference Series: Materials Science and Engineering, 2012, 40, 012037.	0.6	24
74	Antibacterial coating on polymer for space application. Materials Chemistry and Physics, 2012, 135, 714-722.	4.0	46
75	Influence of the Chemical Composition on Nature and Activity of the Surface Layer of Zn-Substituted Solâ^'Gel (Bioactive) Glasses. Journal of Physical Chemistry C, 2011, 115, 2196-2210.	3.1	26
76	Biocompatibility and Antibacterial Effect of Silver Doped 3D-Glass-Ceramic Scaffolds for Bone Grafting. Journal of Biomaterials Applications, 2011, 25, 595-617.	2.4	18
77	Antibiotic-Loaded Cement in Orthopedic Surgery: A Review. ISRN Orthopedics, 2011, 2011, 1-8.	0.8	149
78	Silver nanocluster–silica composite coatings with antibacterial properties. Materials Chemistry and Physics, 2010, 120, 123-126.	4.0	50
79	Chemical, Mechanical, and Antibacterial Properties of Silver Nanocluster–Silica Composite Coatings Obtained by Sputtering. Advanced Engineering Materials, 2010, 12, B276.	3.5	31
80	Surface Activation of a Ferrimagnetic Glass–Ceramic for Antineoplastic Drugs Grafting. Advanced Engineering Materials, 2010, 12, B309.	3.5	14
81	In Vitro Comparison between Commercially and Manually Mixed Antibiotic-Loaded Bone Cements. Journal of Applied Biomaterials and Biomechanics, 2010, 8, 166-174.	0.4	13
82	In vitro comparison between commercially and manually mixed antibiotic-loaded bone cements. Journal of Applied Biomaterials and Biomechanics, 2010, 8, 166-74.	0.4	8
83	Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass. Journal of Materials Science: Materials in Medicine, 2009, 20, 733-740.	3.6	47
84	Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: plasma sprayed glass-coatings. Journal of Materials Science: Materials in Medicine, 2009, 20, 741-749.	3.6	52
85	Glass–ceramic scaffolds containing silica mesophases for bone grafting and drug delivery. Journal of Materials Science: Materials in Medicine, 2009, 20, 809-820.	3.6	46
86	<i>In situ</i> Raman study to monitor bioactive glasses reactivity. Journal of Raman Spectroscopy, 2008, 39, 260-264.	2.5	24
87	3D-glass–ceramic scaffolds with antibacterial properties for bone grafting. Chemical Engineering Journal, 2008, 137, 129-136.	12.7	113
88	Synthesis and characterisation of bioactive and antibacterial glass–ceramic Part 1 – Microstructure, properties and biological behaviour. Advances in Applied Ceramics, 2008, 107, 234-244.	1.1	33
89	Synthesis and characterisation of bioactive and antibacterial glass-ceramic Part 2 – plasma spray coatings on metallic substrates. Advances in Applied Ceramics, 2008, 107, 245-253.	1.1	19
90	Development and Characterization of PEEK/B ₂ O ₃ -Doped 45S5 Bioactive Glass Composite Coatings Obtained by Electrophoretic Deposition. Key Engineering Materials, 0, 654, 165-169.	0.4	11