Ramteen Sioshansi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3084736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects. Energy Economics, 2009, 31, 269-277.	5.6	406
2	The value of compressed air energy storage with wind in transmission-constrained electric power systems. Energy Policy, 2009, 37, 3149-3158.	4.2	253
3	Simulation–optimization model for location of a public electric vehicle charging infrastructure. Transportation Research, Part D: Transport and Environment, 2013, 22, 60-69.	3.2	234
4	The Value of Concentrating Solar Power and Thermal Energy Storage. IEEE Transactions on Sustainable Energy, 2010, 1, 173-183.	5.9	233
5	Emissions Impacts and Benefits of Plug-In Hybrid Electric Vehicles and Vehicle-to-Grid Services. Environmental Science & Technology, 2009, 43, 1199-1204.	4.6	217
6	The value of compressed air energy storage in energy and reserve markets. Energy, 2011, 36, 4959-4973.	4.5	204
7	A highly resolved modeling technique to simulate residential power demand. Applied Energy, 2013, 107, 465-473.	5.1	179
8	Evaluating the Impacts of Real-Time Pricing on the Usage of Wind Generation. IEEE Transactions on Power Systems, 2009, 24, 516-524.	4.6	169
9	The role of energy storage in deep decarbonization of electricity production. Nature Communications, 2019, 10, 3413.	5.8	154
10	The Value of Plug-In Hybrid Electric Vehicles as Grid Resources. Energy Journal, 2010, 31, 1-24.	0.9	134
11	A stochastic flow-capturing model to optimize the location of fast-charging stations with uncertain electric vehicle flows. Transportation Research, Part D: Transport and Environment, 2017, 53, 354-376.	3.2	133
12	The rise of electric vehicles—2020 status and future expectations. Progress in Energy, 2021, 3, 022002.	4.6	132
13	Evaluating the Impacts of Real-Time Pricing on the Cost and Value of Wind Generation. IEEE Transactions on Power Systems, 2010, 25, 741-748.	4.6	126
14	Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system. Energy Policy, 2010, 38, 6703-6712.	4.2	117
15	A Dynamic Programming Approach to Estimate the Capacity Value of Energy Storage. IEEE Transactions on Power Systems, 2014, 29, 395-403.	4.6	117
16	How Thermal Energy Storage Enhances the Economic Viability of Concentrating Solar Power. Proceedings of the IEEE, 2012, 100, 335-347.	16.4	115
17	Unit Commitment Under Gas-Supply Uncertainty and Gas-Price Variability. IEEE Transactions on Power Systems, 2017, 32, 2394-2405.	4.6	109
18	Coordinated Expansion Planning of Natural Gas and Electric Power Systems. IEEE Transactions on Power Systems, 2018, 33, 3064-3075.	4.6	107

#	Article	IF	CITATIONS
19	A stochastic dynamic programming model for co-optimization of distributed energy storage. Energy Systems, 2014, 5, 475-505.	1.8	101
20	Using Price-Based Signals to Control Plug-in Electric Vehicle Fleet Charging. IEEE Transactions on Smart Grid, 2014, 5, 1451-1464.	6.2	100
21	Welfare Impacts of Electricity Storage and the Implications of Ownership Structure. Energy Journal, 2010, 31, 173-198.	0.9	99
22	OR Forum—Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions. Operations Research, 2012, 60, 506-516.	1.2	98
23	Estimating the Capacity Value of Concentrating Solar Power Plants With Thermal Energy Storage: A Case Study of the Southwestern United States. IEEE Transactions on Power Systems, 2013, 28, 1205-1215.	4.6	89
24	Multistage Stochastic Investment Planning With Multiscale Representation of Uncertainties and Decisions. IEEE Transactions on Power Systems, 2018, 33, 781-791.	4.6	89
25	Economic Consequences of Alternative Solution Methods for Centralized Unit Commitment in Day-Ahead Electricity Markets. IEEE Transactions on Power Systems, 2008, 23, 344-352.	4.6	87
26	Hierarchical Clustering to Find Representative Operating Periods for Capacity-Expansion Modeling. IEEE Transactions on Power Systems, 2018, 33, 3029-3039.	4.6	85
27	Market and Policy Barriers to Deployment of Energy Storage. Economics of Energy and Environmental Policy, 2012, 1, .	0.7	83
28	When energy storage reduces social welfare. Energy Economics, 2014, 41, 106-116.	5.6	80
29	Benefits of Colocating Concentrating Solar Power and Wind. IEEE Transactions on Sustainable Energy, 2013, 4, 877-885.	5.9	79
30	Unit Commitment With an Enhanced Natural Gas-Flow Model. IEEE Transactions on Power Systems, 2019, 34, 3729-3738.	4.6	76
31	How good are supply function equilibrium models: an empirical analysis of the ERCOT balancing market. Journal of Regulatory Economics, 2007, 31, 1-35.	0.8	75
32	Increasing the Value of Wind with Energy Storage. Energy Journal, 2011, 32, 1-30.	0.9	73
33	Simulation of an electric transportation system at The Ohio State University. Applied Energy, 2014, 113, 1686-1691.	5.1	72
34	A two-stage stochastic optimization model for scheduling electric vehicle charging loads to relieve distribution-system constraints. Transportation Research Part B: Methodological, 2017, 102, 55-82.	2.8	71
35	Rethinking restructured electricity market design: Lessons learned and future needs. International Journal of Electrical Power and Energy Systems, 2018, 98, 520-530.	3.3	68
36	Comparing Capacity Value Estimation Techniques for Photovoltaic Solar Power. IEEE Journal of Photovoltaics, 2013, 3, 407-415.	1.5	66

#	Article	IF	CITATIONS
37	Estimating the Capacity Value of Concentrating Solar Power Plants: A Case Study of the Southwestern United States. IEEE Transactions on Power Systems, 2012, 27, 1116-1124.	4.6	65
38	Bilevel Robust Optimization of Electric Vehicle Charging Stations With Distributed Energy Resources. IEEE Transactions on Industry Applications, 2020, 56, 5836-5847.	3.3	65
39	A comparative analysis of the value of pure and hybrid electricity storage. Energy Economics, 2011, 33, 56-66.	5.6	63
40	Market equilibria and interactions between strategic generation, wind, and storage. Applied Energy, 2018, 220, 876-892.	5.1	55
41	The role of energy storage in mitigating ramping inefficiencies caused by variable renewable generation. Energy Conversion and Management, 2018, 162, 307-320.	4.4	46
42	Plug-in hybrid electric vehicles can be clean and economical in dirty power systems. Energy Policy, 2011, 39, 6151-6161.	4.2	45
43	The impacts of stochastic programming and demand response on wind integration. Energy Systems, 2013, 4, 109-124.	1.8	44
44	Retail electricity tariff and mechanism design to incentivize distributed renewable generation. Energy Policy, 2016, 95, 498-508.	4.2	43
45	Equilibria in Electricity and Natural Gas Markets With Strategic Offers and Bids. IEEE Transactions on Power Systems, 2020, 35, 1956-1966.	4.6	43
46	A vector autoregression weather model for electricity supply and demand modeling. Journal of Modern Power Systems and Clean Energy, 2018, 6, 763-776.	3.3	42
47	Shadow Price-Based Co-Ordination of Natural Gas and Electric Power Systems. IEEE Transactions on Power Systems, 2019, 34, 1942-1954.	4.6	42
48	Using Demand Response to Improve the Emission Benefits of Wind. IEEE Transactions on Power Systems, 2013, 28, 1385-1394.	4.6	40
49	Spatial effects on hybrid electric vehicle adoption. Transportation Research, Part D: Transport and Environment, 2017, 52, 85-97.	3.2	38
50	Using Electrical Energy Storage to Mitigate Natural Gas-Supply Shortages. IEEE Transactions on Power Systems, 2018, 33, 7076-7086.	4.6	37
51	Energy-Storage Modeling: State-of-the-Art and Future Research Directions. IEEE Transactions on Power Systems, 2022, 37, 860-875.	4.6	37
52	Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors. Energy, 2012, 46, 533-540.	4.5	36
53	Operational Equilibria of Electric and Natural Gas Systems With Limited Information Interchange. IEEE Transactions on Power Systems, 2020, 35, 662-671.	4.6	35
54	Market protocols in ERCOT and their effect on wind generation. Energy Policy, 2010, 38, 3192-3197.	4.2	34

#	Article	IF	CITATIONS
55	Three-part auctions versus self-commitment in day-ahead electricity markets. Utilities Policy, 2010, 18, 165-173.	2.1	34
56	A two-stage stochastic optimization planning framework to decarbonize deeply electric power systems. Energy Economics, 2019, 84, 104457.	5.6	29
57	A dynamic programming model of energy storage and transformer deployments to relieve distribution constraints. Computational Management Science, 2016, 13, 119-146.	0.8	27
58	Benefits of Strategically Sizing Wind-Integrated Energy Storage and Transmission. IEEE Transactions on Power Systems, 2021, 36, 1141-1151.	4.6	26
59	Merchant Storage Investment in a Restructured Electricity Industry. Energy Journal, 2019, 40, 129-164.	0.9	26
60	Measuring the Benefits of Delayed Price-Responsive Demand in Reducing Wind-Uncertainty Costs. IEEE Transactions on Power Systems, 2013, 28, 4118-4126.	4.6	25
61	Data Challenges in Estimating the Capacity Value of Solar Photovoltaics. IEEE Journal of Photovoltaics, 2017, 7, 1065-1073.	1.5	24
62	Using Storage-Capacity Rights to Overcome the Cost-Recovery Hurdle for Energy Storage. IEEE Transactions on Power Systems, 2017, 32, 2028-2040.	4.6	24
63	Energy consumption of residential HVAC systems: A simple physically-based model. , 2012, , .		22
64	Optimized Offers for Cascaded Hydroelectric Generators in a Market With Centralized Dispatch. IEEE Transactions on Power Systems, 2015, 30, 773-783.	4.6	20
65	The price is right? How pricing and incentive mechanisms in California incentivize building distributed hybrid solar and energy-storage systems. Energy Policy, 2020, 138, 111242.	4.2	20
66	Wind-integration benefits of controlled plug-in electric vehicle charging. Journal of Modern Power Systems and Clean Energy, 2017, 5, 746-756.	3.3	18
67	Investment Equilibria Involving Gas-Fired Power Units in Electricity and Gas Markets. IEEE Transactions on Power Systems, 2020, 35, 2736-2747.	4.6	18
68	Emissions Impacts of Wind and Energy Storage in a Market Environment. Environmental Science & Technology, 2011, 45, 10728-10735.	4.6	17
69	Towards equilibrium offers in unit commitment auctions with nonconvex costs. Journal of Regulatory Economics, 2011, 40, 41-61.	0.8	16
70	A stochastic operational model for controlling electric vehicle charging to provide frequency regulation. Transportation Research, Part D: Transport and Environment, 2019, 67, 475-490.	3.2	15
71	Equilibria in investment and spot electricity markets: A conjectural-variations approach. European Journal of Operational Research, 2020, 281, 129-140.	3.5	13
72	Pricing in centrally committed electricity markets. Utilities Policy, 2014, 31, 143-145.	2.1	10

#	Article	IF	CITATIONS
73	The value of CO2-Bulk energy storage with wind in transmission-constrained electric power systems. Energy Conversion and Management, 2021, 228, 113548.	4.4	9
74	The Role of Plug-In Electric Vehicles with Renewable Resources in Electricity Systems. Revue D'Economie Industrielle, 2014, , 291-316.	0.4	9
75	Evaluating a concentrating solar power plant as an extended-duration peaking resource. Solar Energy, 2019, 191, 686-696.	2.9	7
76	A Stochastic-Dynamic-Optimization Approach to Estimating the Capacity Value of Energy Storage. IEEE Transactions on Power Systems, 2022, 37, 1809-1819.	4.6	7
77	Paid to produce absolutely nothing? A Nash-Cournot analysis of a proposed power purchase agreement. Energy Policy, 2021, 156, 112371.	4.2	6
78	Energy Storage Participation in Wholesale Markets: The Impact of State-of-Energy Management. IEEE Open Access Journal of Power and Energy, 2022, 9, 173-182.	2.5	6
79	The capacity value of solar generation in the Western United States. , 2012, , .		5
80	How Climate-Related Policy Affects the Economics of Electricity Generation. Current Sustainable/Renewable Energy Reports, 2021, 8, 17-30.	1.2	5
81	Do Centrally Committed Electricity Markets Provide Useful Price Signals?. Energy Journal, 2012, 33, 96-118.	0.9	5
82	User-Steered Energy Generation and Consumption Multimodel Simulation for Pricing and Policy Development. Computing in Science and Engineering, 2014, 16, 22-33.	1.2	4
83	Adaptive convex relaxations for Gas Pipeline Network Optimization. , 2017, , .		2
84	Electricity Market: A Conversation on Future Designs [Guest Editorial]. IEEE Power and Energy Magazine, 2019, 17, 18-19.	1.6	2
85	Benefits of Stochastic Optimization for Scheduling Energy Storage in Wholesale Electricity Markets. Journal of Modern Power Systems and Clean Energy, 2021, 9, 181-189.	3.3	2
86	The Effect of Natural Gas Prices on Power System Reliability. Current Sustainable/Renewable Energy Reports, 2021, 8, 164-173.	1.2	2
87	Do Renewables Drive Coal-Fired Generation Out of Electricity Markets?. Current Sustainable/Renewable Energy Reports, 2021, 8, 222-232.	1.2	2
88	Data-Driven Modeling of Operating Characteristics of Hydroelectric Generating Units. Current Sustainable/Renewable Energy Reports, 2021, 8, 199.	1.2	1
89	Guest Editorial: Enhancing hosting capability for renewable energy generation in active distribution networks. IET Renewable Power Generation, 2022, 16, 651-654.	1.7	1
90	Using Concentrating-Solar-Power Plants as Economic Carbon-Free Capacity Resources. Energy Conversion and Management: X, 2021, 12, 100112.	0.9	0