A Christopher Oishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/30847/publications.pdf

Version: 2024-02-01

36 papers 3,288 citations

218592 26 h-index 330025 37 g-index

40 all docs

40 docs citations

40 times ranked

4664 citing authors

#	Article	IF	CITATIONS
1	The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 2016, 6, 1023-1027.	8.1	734
2	Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nature Climate Change, 2014, 4, 1099-1102.	8.1	309
3	Estimating components of forest evapotranspiration: A footprint approach for scaling sap flux measurements. Agricultural and Forest Meteorology, 2008, 148, 1719-1732.	1.9	237
4	Rapid and transient response of soil respiration to rain. Global Change Biology, 2004, 10, 1017-1026.	4.2	228
5	Separating the effects of climate and vegetation on evapotranspiration along a successional chronosequence in the southeastern US. Global Change Biology, 2006, 12, 2115-2135.	4.2	219
6	Interannual Invariability of Forest Evapotranspiration and Its Consequence to Water Flow Downstream. Ecosystems, 2010, 13, 421-436.	1.6	137
7	Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis. Tree Physiology, 2005, 25, 887-902.	1.4	129
8	Contrasting responses to drought of forest floor CO2 efflux in a Loblolly pine plantation and a nearby Oak-Hickory forest. Global Change Biology, 2005, 11 , $421-434$.	4.2	95
9	Are ecosystem carbon inputs and outputs coupled at short time scales? A case study from adjacent pine and hardwood forests using impulse?response analysis. Plant, Cell and Environment, 2007, 30, 700-710.	2.8	89
10	Role of vegetation in determining carbon sequestration along ecological succession in the southeastern United States. Global Change Biology, 2008, 14, 1409-1427.	4.2	87
11	Temporal variability in 13C of respired CO2 in a pine and a hardwood forest subject to similar climatic conditions. Oecologia, 2005, 142, 57-69.	0.9	82
12	On the spectrum of soil moisture from hourly to interannual scales. Water Resources Research, 2007, 43 , .	1.7	77
13	Baseliner: An open-source, interactive tool for processing sap flux data from thermal dissipation probes. SoftwareX, 2016, 5, 139-143.	1.2	77
14	On the difference in the net ecosystem exchange of <scp>CO</scp> ₂ between deciduous and evergreen forests in the southeastern United States. Global Change Biology, 2015, 21, 827-842.	4.2	65
15	Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship. Agricultural and Forest Meteorology, 2018, 259, 184-195.	1.9	65
16	Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth System Science Data, 2021, 13, 2607-2649.	3.7	65
17	Hydrologic and atmospheric controls on initiation of convective precipitation events. Water Resources Research, 2007, 43, .	1.7	60
18	A stochastic model for daily subsurface CO2 concentration and related soil respiration. Advances in Water Resources, 2008, 31, 987-994.	1.7	56

#	Article	IF	CITATIONS
19	Conversion of natural forests to managed forest plantations decreases tree resistance to prolonged droughts. Forest Ecology and Management, 2015, 355, 58-71.	1.4	55
20	Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. Agricultural and Forest Meteorology, 2018, 252, 269-282.	1.9	48
21	Reforestation and surface cooling in temperate zones: Mechanisms and implications. Global Change Biology, 2020, 26, 3384-3401.	4.2	44
22	Soil–plant–atmosphere conditions regulating convective cloud formation above southeastern US pine plantations. Global Change Biology, 2016, 22, 2238-2254.	4.2	39
23	Ecophysiological variation of transpiration of pine forests: synthesis of new and published results. Ecological Applications, 2017, 27, 118-133.	1.8	38
24	Spatial and temporal variability of soil CO2 efflux in three proximate temperate forest ecosystems. Agricultural and Forest Meteorology, 2013, 171-172, 256-269.	1.9	32
25	Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 2014, 187, 62-71.	1.9	29
26	The effects of elevated atmospheric CO2 and nitrogen amendments on subsurface CO2 production and concentration dynamics in a maturing pine forest. Biogeochemistry, 2009, 94, 271-287.	1.7	27
27	Trenching reduces soil heterotrophic activity in a loblolly pine (Pinus taeda) forest exposed to elevated atmospheric [CO 2] and N fertilization. Agricultural and Forest Meteorology, 2012, 165, 43-52.	1.9	27
28	Cold air drainage flows subsidize montane valley ecosystem productivity. Global Change Biology, 2016, 22, 4014-4027.	4.2	24
29	Sustained effects of atmospheric [<scp><scp>CO_{2< sub>< scp>< scp>> and nitrogen availability on forest soil <scp><scp>CO_{2< sub>< scp>< scp>< scp> efflux. Global Change Biology, 2014, 20, 1146-1160.}</scp></scp>}</scp></scp>	4.2	23
30	A state-space modeling approach to estimating canopy conductance and associated uncertainties from sap flux density data. Tree Physiology, 2015, 35, 792-802.	1.4	20
31	An evaluation of ECOSTRESS products of a temperate montane humid forest in a complex terrain environment. Remote Sensing of Environment, 2021, 265, 112662.	4.6	18
32	Evapotranspiration and water yield of a pineâ€broadleaf forest are not altered by longâ€ŧerm atmospheric [CO ₂] enrichment under native or enhanced soil fertility. Global Change Biology, 2018, 24, 4841-4856.	4.2	16
33	Water balance of pine forests: Synthesis of new and published results. Agricultural and Forest Meteorology, 2018, 259, 107-117.	1.9	15
34	Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand. Tree Physiology, 2021, 41, 944-959.	1.4	12
35	Dynamics of soil CO ₂ efflux under varying atmospheric CO ₂ concentrations reveal dominance of slow processes. Global Change Biology, 2017, 23, 3501-3512.	4.2	5
36	Tree resin flow dynamics during an experimentally induced attack by <i>lps avulsus</i> , <i>l. calligraphus</i> , and <i>l. grandicollis</i> . Canadian Journal of Forest Research, 2019, 49, 53-63.	0.8	4