
Xingrong Ju

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3084612/publications.pdf Version: 2024-02-01

XINCRONG LU

#	Article	IF	CITATIONS
1	Removal of anti-nutritional factors of rapeseed protein isolate (RPI) and toxicity assessment of RPI. Food and Function, 2022, 13, 664-674.	4.6	4
2	Synergistic growth-inhibition effect of quercetin and N-Acetyl-L-cysteine against HepG2 cells relying on the improvement of quercetin stability. Food Chemistry, 2022, 374, 131729.	8.2	1
3	Anti-inflammatory activity of peptides derived from millet bran <i>in vitro</i> and <i>in vivo</i> . Food and Function, 2022, 13, 1881-1889.	4.6	16
4	Enhancement of DPP-IV inhibitory activity and the capacity for enabling GLP-1 secretion through RADA16-assisted molecular designed rapeseed peptide nanogels. Food and Function, 2022, 13, 5215-5228.	4.6	4
5	Screening and identification of high bioavailable oligopeptides from rapeseed napin (Brassica napus) protein-derived hydrolysates via Caco-2/HepG2 co-culture model. Food Research International, 2022, 155, 111101.	6.2	7
6	Antihypertensive activity of the ACE–renin inhibitory peptide derived from <i>Moringa oleifera</i> protein. Food and Function, 2021, 12, 8994-9006.	4.6	13
7	Study of monoglycerides enriched with unsaturated fatty acids at sn-2 position as oleogelators for oleogel preparation. Food Chemistry, 2021, 354, 129534.	8.2	21
8	Preparation and characteristics of high internal phase emulsions stabilized by rapeseed protein isolate. LWT - Food Science and Technology, 2021, 149, 111753.	5.2	9
9	Effect of staticâ€state fermentation on volatile composition in rapeseed meal. Journal of the Science of Food and Agriculture, 2020, 100, 2145-2152.	3.5	15
10	Structural and functional characterization of rice starch-based superabsorbent polymer materials. International Journal of Biological Macromolecules, 2020, 153, 1291-1298.	7.5	21
11	Insight into the effect of gluten-starch ratio on the properties of Chinese steamed bread (Mantou). International Journal of Biological Macromolecules, 2020, 163, 1821-1827.	7.5	35
12	Synthesis, Purification, and Characterization of a Structured Lipid Based on Soybean Oil and Coconut Oil and Its Applications in Curcuminâ€Loaded Nanoemulsions. European Journal of Lipid Science and Technology, 2020, 122, 2000086.	1.5	5
13	Assessment of the DPPâ€ŧV inhibitory activity of a novel octapeptide derived from rapeseed using Cacoâ€₂ cell monolayers and molecular docking analysis. Journal of Food Biochemistry, 2020, 44, e13406.	2.9	14
14	Enzyme atalyzed acylation improves gel properties of rapeseed protein isolate. Journal of the Science of Food and Agriculture, 2020, 100, 4182-4189.	3.5	16
15	Characterization and analysis of an oilâ€inâ€water emulsion stabilized by rapeseed protein isolate under <scp>pH</scp> and ionic stress. Journal of the Science of Food and Agriculture, 2020, 100, 4734-4744.	3.5	15
16	Lipid-Lowering Effects and Intestinal Transport of Polyphenol Extract from Digested Buckwheat in Caco-2/HepG2 Coculture Models. Journal of Agricultural and Food Chemistry, 2020, 68, 4205-4214.	5.2	21
17	Rapeseed Protein Nanogels As Novel Pickering Stabilizers for Oil-in-Water Emulsions. Journal of Agricultural and Food Chemistry, 2020, 68, 3607-3614.	5.2	65
18	Storage characteristics of infrared radiation stabilized rice bran and its shelfâ€life evaluation by prediction modeling. Journal of the Science of Food and Agriculture, 2020, 100, 2638-2647.	3.5	10

XINGRONG JU

#	Article	IF	CITATIONS
19	Insoluble-bound polyphenols of adlay seed ameliorate H2O2-induced oxidative stress in HepG2 cells via Nrf2 signalling. Food Chemistry, 2020, 325, 126865.	8.2	35
20	Application of ultrasound-assisted physical mixing treatment improves in vitro protein digestibility of rapeseed napin. Ultrasonics Sonochemistry, 2020, 67, 105136.	8.2	35
21	The Manâ€PTS subunit â…;C is responsible for the sensitivity of <i>Listeria monocytogenes</i> to durancin GL. Food Science and Nutrition, 2020, 8, 150-161.	3.4	6
22	Effects of Succinylation on the Physicochemical Properties and Structural Characteristics of Edible Rapeseed Protein Isolate Films. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 1103-1113.	1.9	12
23	Influence of photooxidation on the lipid profile of rapeseed oil using UHPLC-QTOF-MS and multivariate data analysis. Analytical Methods, 2019, 11, 2903-2917.	2.7	6
24	The effect of refining process on the physicochemical properties and micronutrients of rapeseed oils. PLoS ONE, 2019, 14, e0212879.	2.5	52
25	Identification and Quantification of DPP-IV-Inhibitory Peptides from Hydrolyzed-Rapeseed-Protein-Derived Napin with Analysis of the Interactions between Key Residues and Protein Domains. Journal of Agricultural and Food Chemistry, 2019, 67, 3679-3690.	5.2	58
26	The preparation and physiochemical characterization of rapeseed protein hydrolysate-chitosan composite films. Food Chemistry, 2019, 272, 694-701.	8.2	103
27	Fabrication of Stable and Self-Assembling Rapeseed Protein Nanogel for Hydrophobic Curcumin Delivery. Journal of Agricultural and Food Chemistry, 2019, 67, 887-894.	5.2	58
28	Physical stability and microstructure of rapeseed protein isolate/gum Arabic stabilized emulsions at alkaline pH. Food Hydrocolloids, 2019, 88, 50-57.	10.7	74
29	Polyelectrolyte Complex Nanoparticles from Chitosan and Acylated Rapeseed Cruciferin Protein for Curcumin Delivery. Journal of Agricultural and Food Chemistry, 2018, 66, 2685-2693.	5.2	68
30	Effects of acylation and glycation treatments on physicochemical and gelation properties of rapeseed protein isolate. RSC Advances, 2018, 8, 40395-40406.	3.6	30
31	Heavy metal adsorption onto graphene oxide, amino group on magnetic nanoadsorbents and application for detection of Pb(II) by strip sensor. Food and Agricultural Immunology, 2018, 29, 1053-1073.	1.4	27
32	In Situ Proapoptotic Peptide-Generating Rapeseed Protein-Based Nanocomplexes Synergize Chemotherapy for Cathepsin-B Overexpressing Breast Cancer. ACS Applied Materials & Interfaces, 2018, 10, 41056-41069.	8.0	29
33	Absorption and Metabolism of Peptide WDHHAPQLR Derived from Rapeseed Protein and Inhibition of HUVEC Apoptosis under Oxidative Stress. Journal of Agricultural and Food Chemistry, 2018, 66, 5178-5189.	5.2	51
34	Transepithelial Transport of YWDHNNPQIR and Its Metabolic Fate with Cytoprotection against Oxidative Stress in Human Intestinal Caco-2 Cells. Journal of Agricultural and Food Chemistry, 2017, 65, 2056-2065.	5.2	68
35	Production of Bacterial Ghosts from Gram-Positive Pathogen <i>Listeria monocytogenes</i> . Foodborne Pathogens and Disease, 2017, 14, 1-7.	1.8	37

Changes of Dominant Spoilage Bacteria and Biogenic Amines of Taihu White Prawn (Exopalaemon) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

XINGRONG JU

#	Article	IF	CITATIONS
37	Separation and purification of an anti-tumor peptide from rapeseed (Brassica campestris L.) and the effect on cell apoptosis. Food and Function, 2016, 7, 2239-2248.	4.6	41
38	A safe, efficient and simple technique for the removal of cadmium from brown rice flour with citric acid and analyzed by inductively coupled plasma mass spectrometry. Analytical Methods, 2016, 8, 6313-6322.	2.7	12
39	Identification and anti-tumour activities of phenolic compounds isolated from defatted adlay (Coix) Tj ETQq1	1 0.784314 3.4	∙rgǥŢ /Overlo
40	Phenotypic and Genotypic Alterations of Durancin GL-Resistant <i>Enterococcus durans</i> Strains. Foodborne Pathogens and Disease, 2016, 13, 325-332.	1.8	2
41	Study on Antioxidant Activity and Amino Acid Analysis of Rapeseed Protein Hydrolysates. International Journal of Food Properties, 2016, 19, 1899-1911.	3.0	19
42	Structural characterization of phenolic compounds and antioxidant activity of the phenolic-rich fraction from defatted adlay (Coix lachryma-jobi L . var. ma-yuen Stapf) seed meal. Food Chemistry, 2016, 196, 509-517.	8.2	67
43	First Two Domains at the lp_1643 Protein N Terminus Inhibit Pathogen Adhesion to Porcine Mucus In Vitro. Journal of Food Protection, 2015, 78, 370-375.	1.7	5
44	Effect of high pressure treatment on rapeseed protein microparticle properties and gastrointestinal release behavior of the encapsulated peptides. Food Research International, 2015, 77, 549-555.	6.2	15
45	Alanine-Scanning Mutational Analysis of Durancin GL Reveals Residues Important for Its Antimicrobial Activity. Journal of Agricultural and Food Chemistry, 2015, 63, 6402-6409.	5.2	10
46	The Effect of Rapeseed Protein Structural Modification on Microstructural Properties of Peptide Microcapsules. Food and Bioprocess Technology, 2015, 8, 1305-1318.	4.7	41
47	Effects of High Pressure and Heat Treatments on Physicochemical and Gelation Properties of Rapeseed Protein Isolate. Food and Bioprocess Technology, 2014, 7, 1344-1353.	4.7	113
48	Antihypertensive and free radical scavenging properties of enzymatic rapeseed protein hydrolysates. Food Chemistry, 2013, 141, 153-159.	8.2	121
49	Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. Journal of Functional Foods, 2013, 5, 219-227.	3.4	258
50	Phytochemical Profiles and Antioxidant Activity of Adlay Varieties. Journal of Agricultural and Food Chemistry, 2013, 61, 5103-5113.	5.2	180
51	Protective Effect of Polyphenols Extract of Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) on Hypercholesterolemia-Induced Oxidative Stress in Rats. Molecules, 2012, 17, 8886-8897.	3.8	60
52	PCR-CE-SSCP applied to detect cheap oil blended in olive oil. European Food Research and Technology, 2011, 233, 313-324.	3.3	25