Huiming Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3084576/publications.pdf

Version: 2024-02-01

186265 214800 2,397 73 28 47 h-index citations g-index papers 73 73 73 2921 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Multifunctional Ionic Skin with Sensing, UVâ€Filtering, Waterâ€Retaining, and Antiâ€Freezing Capabilities. Advanced Functional Materials, 2021, 31, 2011176.	14.9	198
2	Molecular dynamics simulation on interfacial mechanical properties of polymer nanocomposites with wrinkled graphene. Computational Materials Science, 2015, 108, 160-167.	3.0	125
3	Interlaminar mechanical properties of carbon fiber reinforced plastic laminates modified with graphene oxide interleaf. Carbon, 2015, 91, 224-233.	10.3	123
4	Evaluation of piezoelectric property of reduced graphene oxide (rGO)–poly(vinylidene fluoride) nanocomposites. Nanoscale, 2012, 4, 7250.	5.6	112
5	Ultrasensitive strain sensors made from metal-coated carbon nanofiller/epoxy composites. Carbon, 2013, 51, 202-212.	10.3	107
6	Molecular dynamics study of strengthening mechanism of nanolaminated graphene/Cu composites under compression. Scientific Reports, 2018, 8, 3089.	3.3	99
7	Preparation and characterization of graphene oxide/silk fibroin hybrid aerogel for dye and heavy metal adsorption. Composites Part B: Engineering, 2019, 163, 716-722.	12.0	98
8	Flexible electrochemical energy storage: The role of composite materials. Composites Science and Technology, 2020, 192, 108102.	7.8	82
9	Strengthening effects of twin interface in Cu/Ni multilayer thin films $\hat{a} \in A$ molecular dynamics study. Materials and Design, 2016, 111, 1-8.	7.0	79
10	Highly Compressible and Sensitive Pressure Sensor under Large Strain Based on 3D Porous Reduced Graphene Oxide Fiber Fabrics in Wide Compression Strains. ACS Applied Materials & Interfaces, 2019, 11, 37051-37059.	8.0	74
11	DYNAMIC LOAD IDENTIFICATION FOR UNCERTAIN STRUCTURES BASED ON INTERVAL ANALYSIS AND REGULARIZATION METHOD. International Journal of Computational Methods, 2011, 08, 667-683.	1.3	69
12	Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process. Composites Science and Technology, 2020, 192, 108105.	7.8	69
13	Investigation on the interfacial mechanical properties of hybrid graphene-carbon nanotube/polymer nanocomposites. Carbon, 2017, 115, 694-700.	10.3	68
14	Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology. Composites Part A: Applied Science and Manufacturing, 2019, 121, 223-231.	7.6	65
15	Environmentallyâ€Friendly and Multifunctional Grapheneâ€Silk Fabric Strain Sensor for Humanâ€Motion Detection. Advanced Materials Interfaces, 2020, 7, 1901507.	3.7	65
16	Carbonized polydopamine nanoparticle reinforced graphene films with superior thermal conductivity. Carbon, 2019, 149, 173-180.	10.3	55
17	The interfacial mechanical properties of functionalized graphene–polymer nanocomposites. RSC Advances, 2016, 6, 66658-66664.	3.6	50
18	Recent advances in the preparation of PVDF-based piezoelectric materials. Nanotechnology Reviews, 2022, 11, 1386-1407.	5.8	50

#	Article	lF	Citations
19	Power generation by PVDF-TrFE/graphene nanocomposite films. Composites Part B: Engineering, 2019, 164, 703-709.	12.0	48
20	Experimental and numerical study on the improvement of interlaminar mechanical properties of AI/CFRP laminates. Journal of Materials Processing Technology, 2015, 216, 79-88.	6.3	43
21	Toughening effect of CB-epoxy interleaf on the interlaminar mechanical properties of CFRP laminates. Composites Part A: Applied Science and Manufacturing, 2015, 68, 226-234.	7.6	40
22	Enhancement of thermal energy transport across the graphene/h-BN heterostructure interface. Nanoscale, 2019, 11, 4067-4072.	5.6	38
23	Improved energy harvesting capability of poly(vinylidene fluoride) films modified by reduced graphene oxide. Journal of Intelligent Material Systems and Structures, 2014, 25, 1813-1824.	2.5	35
24	Multi-scale numerical simulations of thermal expansion properties of CNT-reinforced nanocomposites. Nanoscale Research Letters, 2013, 8, 15.	5.7	32
25	Construction of 3D CoO Quantum Dots/Graphene Hydrogels as Binder-Free Electrodes for Ultra-high Rate Energy Storage Applications. Electrochimica Acta, 2017, 243, 152-161.	5.2	32
26	Enhancement of PVDF's piezoelectricity by VGCF and MWNT. Advanced Composite Materials, 2013, 22, 49-63.	1.9	31
27	Graphene/Graphitized Polydopamine/Carbon Nanotube All-Carbon Ternary Composite Films with Improved Mechanical Properties and Through-Plane Thermal Conductivity. ACS Applied Materials & Interfaces, 2020, 12, 57391-57400.	8.0	31
28	Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance. Nanotechnology, 2013, 24, 455501.	2.6	29
29	Prediction of pull-out force of multi-walled carbon nanotube (MWCNT) in sword-in-sheath mode. Computational Materials Science, 2012, 60, 7-12.	3.0	27
30	Ultrasensitive strain sensors of multiwalled carbon nanotube/epoxy nanocomposite using dielectric loss tangent. Applied Physics Letters, 2013, 103, .	3.3	27
31	Ultratough reduced graphene oxide composite films synergistically toughened and reinforced by polydopamine wrapped carbon nanotubes. Carbon, 2020, 159, 422-431.	10.3	25
32	Synergistic effect of CB and MWCNT on the strain-induced DC and AC electrical properties of PVDF-HFP composites. Carbon, 2019, 144, 509-518.	10.3	21
33	A comprehensive review of characterization and simulation methods for thermo-stamping of 2D woven fabric reinforced thermoplastics. Composites Part B: Engineering, 2020, 203, 108462.	12.0	20
34	Damage Evaluation Based on a Wave Energy Flow Map Using Multiple PZT Sensors. Sensors, 2014, 14, 1902-1917.	3.8	19
35	Mode-II interlaminar fracture toughness of GFRP/Al laminates improved by surface modified VGCF interleaves. Composites Part B: Engineering, 2017, 114, 365-372.	12.0	19
36	Improved piezoelectric properties of poly(vinylidene fluoride) nanocomposites containing multi-walled carbon nanotubes. Smart Materials and Structures, 2013, 22, 065011.	3.5	18

3

#	Article	IF	CITATIONS
37	Tomographic reconstruction of damage images in hollow cylinders using Lamb waves. Ultrasonics, 2014, 54, 2015-2023.	3.9	18
38	Investigation of thermal energy transport interface of hybrid graphene-carbon nanotube/polyethylene nanocomposites. Scientific Reports, 2017, 7, 14700.	3.3	18
39	Anisotropic and asymmetric deformation mechanisms of nanolaminated graphene/Cu composites. Nano Materials Science, 2019, 1, 121-130.	8.8	18
40	Understanding the mechanical properties and deformation behavior of 3-D graphene-carbon nanotube structures. Materials and Design, 2018, 160, 377-383.	7.0	17
41	Investigation on mode-II interface fracture toughness of CFRP/Al laminates toughened by VGCF interleaves. Journal of Materials Science, 2015, 50, 1915-1923.	3.7	15
42	A mixed-form solution to the macroscopic elastic properties of 2D triaxially braided composites based on a concentric cylinder model and the rule of mixture. Composites Part B: Engineering, 2019, 156, 355-367.	12.0	15
43	Investigation of interfacial mechanical properties of graphene-polymer nanocomposites. Molecular Simulation, 2016, 42, 1165-1170.	2.0	14
44	An Inverse Approach of Damage Identification Using Lamb Wave Tomography. Sensors, 2019, 19, 2180.	3.8	13
45	Design of elastic metasurfaces for controlling shear vertical waves using uniaxial scaling transformation method. International Journal of Mechanical Sciences, 2020, 169, 105335.	6.7	13
46	Synergistic Delamination Toughening of Glass Fiber-Aluminum Laminates by Surface Treatment and Graphene Oxide Interleaf. Nanoscale Research Letters, 2020, 15, 74.	5.7	12
47	Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites. Journal of Applied Physics, 2013, 113, 144304.	2.5	11
48	Ultimate strength prediction of two-dimensional tri-axial braided composites based on an analytical laminate model. Journal of Reinforced Plastics and Composites, 2018, 37, 917-929.	3.1	8
49	Fabrication of bagel-like graphene aerogels and its application in pressure sensors. Smart Materials and Structures, 2019, 28, 055020.	3.5	8
50	1-Pyrenemethanol derived nanocrystal reinforced graphene films with high thermal conductivity and flexibility. Nanotechnology, 2020, 31, 065602.	2.6	8
51	Interlaminar mechanical properties of nano- and short-aramid fiber reinforced glass fiber-aluminum laminates: a comparative study. Journal of Materials Science, 2021, 56, 12198-12211.	3.7	8
52	Giant piezoresistive gauge factor in vein-membrane/graphene sensors with a wide linear working range. Journal of Materials Chemistry C, 2020, 8, 16957-16966.	5.5	8
53	Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves. Science and Technology of Advanced Materials, 2014, 15, 035004.	6.1	7
54	An Efficient Algorithm Embedded in an Ultrasonic Visualization Technique for Damage Inspection Using the AE Sensor Excitation Method. Sensors, 2014, 14, 20439-20450.	3.8	6

#	Article	IF	CITATIONS
55	Conductive PVDF-HFP/CNT composites for strain sensing. Functional Materials Letters, 2016, 09, 1650024.	1.2	6
56	Molecular dynamics simulations of thermal expansion properties of single layer graphene sheets. Molecular Simulation, 2018, 44, 34-39.	2.0	6
57	Wearable Multifunctional Grapheneâ€Based Aerogel/Spacer Fabric Composites for Sensing and Impact Protection. Advanced Materials Technologies, 2022, 7, .	5.8	6
58	Enhancement of energy harvesting capability using PVDF/GFRP-laminated films. Journal of Sandwich Structures and Materials, 2019, 21, 2548-2562.	3.5	5
59	Strain effects on the interfacial thermal conductance of graphene/h-BN heterostructure. Nano Materials Science, 2022, 4, 227-234.	8.8	5
60	Highly sensitive humidity sensors made from composites of HEC filled by carbon nanofillers. Materials Technology, 2015, 30, 134-139.	3.0	4
61	Effects of initial crystallization process on piezoelectricity of PVDF-HFP films. Journal of Polymer Engineering, 2015, 35, 451-461.	1.4	4
62	Multi-objective robust design optimization of a two-dimensional tri-axial braided hollow pillar using an evolutionary algorithm. Composite Structures, 2019, 220, 105-113.	5.8	4
63	A three-layer mechanical model for the analysis of effects of pia matter on cortical folding. Engineering Computations, 2019, 36, 2634-2650.	1.4	4
64	Fast Bayesian approach to model calibration of vehicle occupant restraint systems. International Journal of Crashworthiness, 2016, 21, 1-8.	1.9	3
65	Improvement of the piezoelectricity of PVDF-TrFE by carbon black. Materials Research Express, 2019, 6, 025509.	1.6	3
66	Development of Three-Dimensional GSM-CFD Solver for Compressible Flows. International Journal of Computational Methods, 2017, 14, 1750037.	1.3	2
67	Human Motion Detection: Environmentallyâ€Friendly and Multifunctional Grapheneâ€6ilk Fabric Strain Sensor for Humanâ€Motion Detection (Adv. Mater. Interfaces 1/2020). Advanced Materials Interfaces, 2020, 7, 2070006.	3.7	2
68	Fabrication and Performance Evaluation of Piezoelectric Strain Sensors Made from PVDF/MWNT Nanocomposites. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 563-572.	0.2	1
69	Monitoring of Local Plasticity Using Lamb Waves. Advances in Structural Engineering, 2015, 18, 339-351.	2.4	1
70	Influences of preparation process on electrical conductivity and thermal expansion coefficient of epoxy/graphene nanocomposites. Materials Research Express, 2019, 6, 116318.	1.6	1
71	Improvement of Piezoelectric Property of Poly(Vinylidene Fluoride) Nanocomposites Using Multi-Walled Carbon Nanotubes. Applied Mechanics and Materials, 0, 392, 57-61.	0.2	0
72	Mechanical Properties of Organic Flexible Devices Fabricated by Thermal Press Method. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2013, 79, 1137-1141.	0.2	0

#	Article	lF	CITATIONS
73	Improvement of mode-â; interface mechanical properties of Al/GFRP composite laminates by VGCF. Transactions of the JSME (in Japanese), 2014, 80, SMM0021-SMM0021.	0.2	O