Marcus G Heisler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/308443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patterns of Auxin Transport and Gene Expression during Primordium Development Revealed by Live Imaging of the Arabidopsis Inflorescence Meristem. Current Biology, 2005, 15, 1899-1911.	1.8	1,071
2	Accounting for technical noise in single-cell RNA-seq experiments. Nature Methods, 2013, 10, 1093-1095.	9.0	929
3	Developmental Patterning by Mechanical Signals in <i>Arabidopsis</i> . Science, 2008, 322, 1650-1655.	6.0	795
4	Antagonistic Regulation of PIN Phosphorylation by PP2A and PINOID Directs Auxin Flux. Cell, 2007, 130, 1044-1056.	13.5	590
5	An auxin-driven polarized transport model for phyllotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1633-1638.	3.3	558
6	Alignment between PIN1 Polarity and Microtubule Orientation in the Shoot Apical Meristem Reveals a Tight Coupling between Morphogenesis and Auxin Transport. PLoS Biology, 2010, 8, e1000516.	2.6	392
7	Pattern formation during de novo assembly of the <i>Arabidopsis</i> shoot meristem. Development (Cambridge), 2007, 134, 3539-3548.	1.2	320
8	Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development (Cambridge), 2004, 131, 4225-4237.	1.2	299
9	The Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development (Cambridge), 2004, 131, 1111-1122.	1.2	230
10	Cytokinin signaling as a positional cue for patterning the apical–basal axis of the growing <i>Arabidopsis</i> shoot meristem. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4002-4007.	3.3	200
11	Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics, 2005, 21, i232-i240.	1.8	145
12	Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Molecular Systems Biology, 2013, 9, 654.	3.2	126
13	Auxin Acts through MONOPTEROS to Regulate Plant Cell Polarity and Pattern Phyllotaxis. Current Biology, 2016, 26, 3202-3208.	1.8	115
14	Cell type boundaries organize plant development. ELife, 2017, 6, .	2.8	106
15	Regulation of <i>MIR165/166</i> by class II and class III homeodomain leucine zipper proteins establishes leaf polarity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11973-11978.	3.3	98
16	Integrated genetic and computation methods for in planta cytometry. Nature Methods, 2012, 9, 483-485.	9.0	92
17	Two-Step Regulation of a Meristematic Cell Population Acting in Shoot Branching in Arabidopsis. PLoS Genetics, 2016, 12, e1006168.	1.5	91
18	In situ hybridization for mRNA detection in Arabidopsis tissue sections. Nature Protocols, 2006, 1, 1462-1467.	5.5	73

2

MARCUS G HEISLER

#	Article	IF	CITATIONS
19	Alternate wiring of a <i>KNOXI</i> genetic network underlies differences in leaf development of <i>A. thaliana</i> and <i>C. hirsuta</i> . Genes and Development, 2015, 29, 2391-2404.	2.7	68
20	Modeling Auxin Transport and Plant Development. Journal of Plant Growth Regulation, 2006, 25, 302-312.	2.8	67
21	Genome-Wide Identification of KANADI1 Target Genes. PLoS ONE, 2013, 8, e77341.	1.1	61
22	Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. Nature Communications, 2019, 10, 726.	5.8	51
23	The shady side of leaf development: the role of the REVOLUTA/KANADI1 module in leaf patterning and auxin-mediated growth promotion. Current Opinion in Plant Biology, 2017, 35, 111-116.	3.5	44
24	Apical–basal polarity: why plant cells don't standon their heads. Trends in Plant Science, 2006, 11, 12-14.	4.3	37
25	Modelling meristem development in plants. Current Opinion in Plant Biology, 2007, 10, 92-97.	3.5	37
26	Progress in understanding the role of auxin in lateral organ development in plants. Current Opinion in Plant Biology, 2020, 53, 73-79.	3.5	34
27	Cytokinin signalling regulates organ identity via AHK4 receptor in <i>Arabidopsis</i> . Development (Cambridge), 2018, 145, .	1.2	32
28	Live-imaging of plant development: latest approaches. Current Opinion in Plant Biology, 2013, 16, 33-40.	3.5	25
29	Self-organizing periodicity in development: organ positioning in plants. Development (Cambridge), 2018, 145, .	1.2	25
30	Quantitative analysis of auxin sensing in leaf primordia argues against proposed role in regulating leaf dorsoventrality. ELife, 2019, 8, .	2.8	22
31	Live-Imaging of the Arabidopsis Inflorescence Meristem. Methods in Molecular Biology, 2014, 1110, 431-440.	0.4	18
32	An integrated analysis of cell-type specific gene expression reveals genes regulated by REVOLUTA and KANADI1 in theÂArabidopsisÂshoot apical meristem. PLoS Genetics, 2020, 16, e1008661.	1.5	17
33	Integration of Core Mechanisms Underlying Plant Aerial Architecture. Frontiers in Plant Science, 2021, 12, 786338.	1.7	6
34	A Software Architecture for Developmental Modeling in Plants: The Computable Plant Project. , 2006, , 345-354.		5
35	Live Imaging of Arabidopsis Leaf and Vegetative Meristem Development. Methods in Molecular Biology, 2021, 2200, 295-302.	0.4	5
36	Computer Modeling of Plant Development. Journal of Plant Growth Regulation, 2006, 25, 267-269.	2.8	0

#	Article	IF	CITATIONS
37	Plant growth and development: new answers to old questions?. Current Opinion in Plant Biology, 2020, 53, A1-A2.	3.5	0