R G Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/308439/publications.pdf

Version: 2024-02-01

55

all docs

53 1,273 19
papers citations h-index

55

docs citations

h-index g-index

55
1058
times ranked citing authors

35

#	Article	IF	CITATIONS
1	Thyroid hormones states and brain development interactions. International Journal of Developmental Neuroscience, 2008, 26, 147-209.	0.7	258
2	Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: I. The development of the thyroid hormones–neurotransmitters and adenosinergic system interactions. International Journal of Developmental Neuroscience, 2010, 28, 437-454.	0.7	116
3	Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: Il—The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. International Journal of Developmental Neuroscience, 2012, 30, 517-537.	0.7	91
4	Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction. Food and Chemical Toxicology, 2016, 95, 168-174.	1.8	63
5	Early weaning PCB 95 exposure alters the neonatal endocrine system: thyroid adipokine dysfunction. Journal of Endocrinology, 2013, 219, 205-215.	1.2	55
6	Perinatal TCDD exposure alters developmental neuroendocrine system. Food and Chemical Toxicology, 2011, 49, 1276-1284.	1.8	54
7	Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues. Journal of Endocrinology, 2013, 218, 105-115.	1.2	47
8	Thyroid hormone inhibition in L6 myoblasts of IGF-I-mediated glucose uptake and proliferation: new roles for integrin $\hat{l}\pm v\hat{l}^23$. American Journal of Physiology - Cell Physiology, 2014, 307, C150-C161.	2.1	46
9	Comparative study of the effects of experimentally induced hypothyroidism and hyperthyroidism in some brain regions in albino rats. International Journal of Developmental Neuroscience, 2010, 28, 371-389.	0.7	44
10	Hypothyroidism and brain developmental players. Thyroid Research, 2015, 8, 2.	0.7	43
10	Hypothyroidism and brain developmental players. Thyroid Research, 2015, 8, 2. Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sciences, 2018, 192, 213-220.	2.0	40
	Gestational 3,3′,4,4′,5-pentachlorobiphenvl (PCB 126) exposure disrupts fetoplacental unit: Fetal		
11	Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sciences, 2018, 192, 213-220. Gestational doxorubicin alters fetal thyroid–brain axis. International Journal of Developmental	2.0	40
11 12	Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sciences, 2018, 192, 213-220. Gestational doxorubicin alters fetal thyroid–brain axis. International Journal of Developmental Neuroscience, 2013, 31, 96-104. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicology and Industrial	2.0	40 37
11 12 13	Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sciences, 2018, 192, 213-220. Gestational doxorubicin alters fetal thyroid–brain axis. International Journal of Developmental Neuroscience, 2013, 31, 96-104. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicology and Industrial Health, 2018, 34, 397-407.	2.0 0.7 0.6	40 37 35
11 12 13	Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sciences, 2018, 192, 213-220. Gestational doxorubicin alters fetal thyroid–brain axis. International Journal of Developmental Neuroscience, 2013, 31, 96-104. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicology and Industrial Health, 2018, 34, 397-407. Gestational dexamethasone alters fetal neuroendocrine axis. Toxicology Letters, 2016, 258, 46-54. Immune stimulation improves endocrine and neural fetal outcomes in a model of maternofetal	2.0 0.7 0.6	40 37 35 33
11 12 13 14	Gestational 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) exposure disrupts fetoplacental unit: Fetal thyroid-cytokines dysfunction. Life Sciences, 2018, 192, 213-220. Gestational doxorubicin alters fetal thyroid–brain axis. International Journal of Developmental Neuroscience, 2013, 31, 96-104. Suppressive effects of neonatal bisphenol A on the neuroendocrine system. Toxicology and Industrial Health, 2018, 34, 397-407. Gestational dexamethasone alters fetal neuroendocrine axis. Toxicology Letters, 2016, 258, 46-54. Immune stimulation improves endocrine and neural fetal outcomes in a model of maternofetal thyrotoxicosis. International Immunopharmacology, 2015, 29, 714-721.	2.0 0.7 0.6 0.4	37 35 33 31

#	Article	IF	CITATIONS
19	Protective effects of GM-CSF in experimental neonatal hypothyroidism. International Immunopharmacology, 2015, 29, 538-543.	1.7	22
20	Maternal Iodine Deficiency and Brain Disorders. Endocrinology & Metabolic Syndrome: Current Research, 2016, 05, .	0.3	17
21	Perinatal Hypothyroidism and Cytoskeleton Dysfunction. Endocrinology & Metabolic Syndrome: Current Research, 2017, 06, .	0.3	16
22	Antiepileptic Drugs and Developmental Neuroendocrine Dysfunction: Every Why has A Wherefore. Archives of Medicine, 2017, 09, .	0.2	15
23	Hypothyroidism and Brain Development. Journal of Animal Research and Nutrition, 2017, 02, .	0.4	14
24	Evolutionary interactions between diabetes and development. Diabetes Research and Clinical Practice, 2011, 92, 153-167.	1,1	12
25	Nongenomic Actions of Thyroid Hormones: From Basic Research to Clinical Applications. An Update. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2013, 13, 46-59.	0.5	12
26	Gestational caffeine exposure acts as a fetal thyroid-cytokine disruptor by activating caspase-3/BAX/Bcl-2/Cox2/NF-κB at ED 20. Toxicology Research, 2019, 8, 196-205.	0.9	11
27	Gestational Prooxidant-Antioxidant Imbalance may be at Higher Risk for Postpartum Thyroid Disease. Endocrinology & Metabolic Syndrome: Current Research, 2017, 06, .	0.3	10
28	Hyperthyroidism and Developmental Dysfunction. Archives of Medicine, 2017, 09, .	0.2	10
29	Maternal thyroid dysfunction and neonatal cardiac disorders. , 2017, 1, 092-096.		10
30	Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose-Response, 2019, 17, 155932581985826.	0.7	9
31	Maternal lithium chloride exposure alters the neuroendocrineâ€cytokine axis in neonatal albino rats. International Journal of Developmental Neuroscience, 2020, 80, 123-138.	0.7	5
32	Perinatal fluoxetine treatment promotes long-term behavioral changes in adult mice. Metabolic Brain Disease, 2020, 35, 1341-1351.	1.4	5
33	Overdoses of Acetaminophen Disrupt the Thyroid-Liver Axis in Neonatal Rats. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2019, 19, 705-714.	0.6	5
34	Corrigendum to "Thyroid hormone states and brain development interactions―[International Journal of Developmental Neuroscience 2008; 26 (2): 147–209]. International Journal of Developmental Neuroscience, 2008, 26, 825-826.	0.7	4
35	Patterns of folliculogenesis in ducks following the administration of a gonadotropin-releasing hormone 1 (GnRH) analogue. Journal of Genetic Engineering and Biotechnology, 2012, 10, 93-99.	1.5	3
36	Damage Pattern as a Function of Various Types of Radiation. International Journal of Zoological Research, 2006, 2, 150-168.	0.6	3

#	Article	IF	CITATIONS
37	The Relation between Biological Consequences and High Temperature in Mammals. International Journal of Zoological Research, 2005, 2, 48-59.	0.6	3
38	Maternal-Fetal Thyroid Interactions. , 2012, , .		2
39	Does the Heat Stress Affect the Neurons Development in Some Central Nervous System Regions of Albino Rat Newborns?. Asian Journal of Animal and Veterinary Advances, 2007, 2, 86-103.	0.3	2
40	Peroxiredoxins and Neurodegeneration. International Journal of Zoological Research, 2006, 2, 226-241.	0.6	2
41	Age and Heat Stress Related Changes in Monoamine Contents and Cholinesterase Activity in Some Central Nervous System Regions of Albino Rat Newborns. International Journal of Zoological Research, 2007, 3, 65-76.	0.6	2
42	Maternal Sodium Valproate Exposure Alters Neuroendocrine-Cytokines and Oxido-inflammatory Axes in Neonatal Albino Rats. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2021, 21, 1491-1503.	0.6	2
43	The Relation between Biological Consequences and Temperature on Some Non-Mammalian Species. International Journal of Zoological Research, 2006, 2, 136-149.	0.6	2
44	Maternal LiCl exposure disrupts thyroid–cerebral axis in neonatal albino rats. International Journal of Developmental Neuroscience, 2021, 81, 741-758.	0.7	1
45	Novel Coronavirus SARS-CoV-2 (COVID-19) and Pregnancy: A hypothetical view. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2020, 20, 1392-1405.	0.6	1
46	Endocrine Disruptors; Possible Mechanisms for Inducing Developmental Disorders. International Journal of Basic Science in Medicine, 2017, 2, 157-160.	0.1	1
47	Maternal Thyroid Disorders and Developing Metabolic Syndrome. Journal of Endocrinology and Thyroid Research, 2018, 3, .	0.2	0
48	Maternal Thyroid Disorders, Labor Complications and Preterm Delivery. Journal of Pharmacology & Clinical Research, 2018, 5, .	0.1	0
49	Relationship between Maternal Thyroid autoantibodies, Preterm Delivery and Neonatal Disorders: Potential Challenges. Journal of Pharmacology & Clinical Research, 2018, 5, .	0.1	0
50	Maternal Cigarette Smoking and Maternofetal Thyroid Dysfunctions. Open Access Journal of Toxicology, 2018, 3, .	0.3	0
51	Maternal Hypothyroidism and Sensorineural Disability. Global Journal of Pharmacy & Pharmaceutical Sciences, 2018, 5, .	0.1	0
52	Introductory Chapter: Growth Disorders. , 0, , .		0
53	Neonatal Dâ€fenfluramine Treatment Promotes Longâ€Term Behavioral Changes in Adult Mice. International Journal of Developmental Neuroscience, 0, , .	0.7	0