Tao Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3084223/publications.pdf

Version: 2024-02-01

1040056 1372567 1,060 21 9 10 citations h-index g-index papers 21 21 21 1713 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	How Useful are Conventional <i>l–V</i> s for Performance Calibration of Singleâ€and Twoâ€Junction Perovskite Solar Cells? A Statistical Analysis of Performance Data on â‰^200 Cells from 30 Global Sources. Solar Rrl, 2022, 6, 2100867.	5.8	6
2	How Useful are Conventional <i>l–V</i> s for Performance Calibration of Single―and Two―unction Perovskite Solar Cells? A Statistical Analysis of Performance Data on â‰^200 Cells from 30 Global Sources. Solar Rrl, 2022, 6, 2270013.	5.8	1
3	Triple-junction solar cells with 39.5% terrestrial and 34.2% space efficiency enabled by thick quantum well superlattices. Joule, 2022, 6, 1121-1135.	24.0	67
4	Comprehensive Performance Calibration Guidance for Perovskites and Other Emerging Solar Cells. Advanced Energy Materials, 2021, 11, 2100728.	19.5	13
5	Reliable Power Rating of Perovskite PV Modules. , 2021, , .		4
6	Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy, 2020, 5, 326-335.	39.5	408
7	Critical Steps Towards Accurate Efficiency Measurement of Emerging Tandem Solar Cells. , 2020, , .		1
8	High efficiency perovskite quantum dot solar cells with charge separating heterostructure. Nature Communications, 2019, 10, 2842.	12.8	308
9	Measurements of Six-Junction Concentrator Solar Cells. , 2019, , .		1
10	NREL's Improved Linearity Testing of Photovoltaic Reference Cells. , 2019, , .		0
11	Accurate Efficiency Measurements for Emerging PV: A Comparison of NREL's Steady-State Performance Calibration Protocol Between Conventional and Emerging PV Technologies., 2019,,.		2
12	Quantitative Study of the Effect of Non-Uniform Irradiance on Module Performance Combining EL and DLIT Imaging with Circuit Modeling. , $2018, , .$		0
13	Te Layer to Reduce the CdTe Back-Contact Barrier. IEEE Journal of Photovoltaics, 2018, 8, 293-298.	2.5	30
14	Improved CdTe Solar-Cell Performance with An Evaporated Te Layer before The Back Contact. MRS Advances, 2017, 2, 3195-3201.	0.9	13
15	Role of Tellurium Buffer Layer on CdTe Solar Cells' Absorber/Back-Contact Interface. , 2017, , .		1
16	Emitter/absorber interface of CdTe solar cells. Journal of Applied Physics, 2016, 119, .	2.5	156
17	Emitter choice for epitaxial CdTe solar cells. , 2016, , .		O
18	Choice of substrate material for epitaxial CdTe solar cells. , 2015, , .		2

TAO SONG

#	Article	IF	CITATIONS
19	Design of Epitaxial CdTe Solar Cells on InSb Substrates. IEEE Journal of Photovoltaics, 2015, 5, 1762-1768.	2.5	12
20	Exploring the potential for high-quality epitaxial CdTe solar cells. , 2014, , .		8
21	Interface-Barrier-Induced J–V Distortion of CIGS Cells With Sputtered-Deposited Zn(S,O) Window Layers. IEEE Journal of Photovoltaics, 2014, 4, 942-947.	2.5	27