Yefeng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3084191/publications.pdf

Version: 2024-02-01

279798 454955 1,585 31 23 30 citations h-index g-index papers 31 31 31 2156 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hierarchical NiCo ₂ O ₄ @NiMoO ₄ core–shell hybrid nanowire/nanosheet arrays for high-performance pseudocapacitors. Journal of Materials Chemistry A, 2015, 3, 14348-14357.	10.3	213
2	Dopant-Induced Shape Evolution of Colloidal Nanocrystals: The Case of Zinc Oxide. Journal of the American Chemical Society, 2010, 132, 13381-13394.	13.7	174
3	Construction of Hierarchical NiCo ₂ O ₄ @Ni-MOF Hybrid Arrays on Carbon Cloth as Superior Battery-Type Electrodes for Flexible Solid-State Hybrid Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 37675-37684.	8.0	169
4	Construction of Hierarchical NiCo2S4@Ni(OH)2 Core-Shell Hybrid Nanosheet Arrays on Ni Foam for High-Performance Aqueous Hybrid Supercapacitors. Electrochimica Acta, 2016, 193, 116-127.	5.2	151
5	Shape control of colloidal Mn doped ZnO nanocrystals and their visible light photocatalytic properties. Nanoscale, 2013, 5, 10461.	5.6	86
6	Recent Progress of TiO ₂ -Based Anodes for Li Ion Batteries. Journal of Nanomaterials, 2016, 2016, 1-15.	2.7	81
7	Coupling hierarchical iron cobalt selenide arrays with N-doped carbon as advanced anodes for sodium ion storage. Journal of Materials Chemistry A, 2021, 9, 7248-7256.	10.3	54
8	Bimetallic MOF-derived (CuCo)Se nanoparticles embedded in nitrogen-doped carbon framework with boosted electrochemical performance for hybrid supercapacitor. Materials Research Bulletin, 2021, 137, 111196.	5.2	51
9	Piezoelectric properties of rhombic LiNbO3 nanowires. RSC Advances, 2012, 2, 7380.	3.6	45
10	Spatially Confined Synthesis of SnSe Spheres Encapsulated in N, Se Dual-Doped Carbon Networks toward Fast and Durable Sodium Storage. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4230-4241.	8.0	43
11	Interlaced NiMn-LDH nanosheet decorated NiCo ₂ O ₄ nanowire arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors. Dalton Transactions, 2019, 48, 12168-12176.	3.3	41
12	Heterostructured NiS2@SnS2 hollow spheres as superior high-rate and durable anodes for sodium-ion batteries. Science China Chemistry, 2022, 65, 1420-1432.	8.2	40
13	Growth of Ultrathin Mesoporous Ni-Mo Oxide Nanosheet Arrays on Ni Foam for High-performance Supercapacitor Electrodes. Electrochimica Acta, 2015, 176, 1343-1351.	5.2	38
14	Designed construction of hierarchical NiCo ₂ S ₄ @polypyrrole core–shell nanosheet arrays as electrode materials for high-performance hybrid supercapacitors. RSC Advances, 2017, 7, 18447-18455.	3.6	36
15	One-step sulfuration synthesis of hierarchical NiCo ₂ S ₄ @NiCo ₂ hanotube/nanosheet arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors. RSC Advances, 2019, 9, 3041-3049.	3.6	36
16	Facile synthesis and characterization of ultrathin cerium oxide nanorods. CrystEngComm, 2010, 12, 2663.	2.6	34
17	Novel Construction of Heterostructured FeTiO ₃ /Fe _{2.75} Ti _{0.25} O ₄ Mesoporous Nanodisks with Both High Capacity and Stable Cycling Life for Lithium-Ion Storage. ACS Applied Energy Materials, 2021, 4. 10380-10390.	5.1	29
18	Growth of three-dimensional hierarchical Co 3 O 4 @NiMoO 4 core-shell nanoflowers on Ni foam as electrode materials for hybrid supercapacitors. Materials Letters, 2016, 182, 298-301.	2.6	28

#	Article	IF	CITATIONS
19	Growth of highly mesoporous CuCo2O4 nanoflakes@Ni(OH)2 nanosheets as advanced electrodes for high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2017, 722, 928-937.	5.5	27
20	Novel NiO Nanoforest Architecture for Efficient Inverted Mesoporous Perovskite Solar Cells. ACS Applied Materials & Solar	8.0	27
21	Boosted Electrochemical Performance of Honeycomb-Like NiCu–LDH Nanosheets Anchoring on NiCo ₂ S ₄ Nanotube Arrays for Flexible Solid-State Hybrid Supercapacitors. Energy & Description (1988) Energy & Desc	5.1	26
22	Metal-organic frameworks derived copper doped cobalt phosphide nanosheet arrays with boosted electrochemical performance for hybrid supercapacitors. Electrochimica Acta, 2020, 363, 137262.	5.2	25
23	Construction of hierarchical NiCo ₂ S ₄ nanotube@NiMoO ₄ nanosheet hybrid arrays as advanced battery-type electrodes for hybrid supercapacitors. New Journal of Chemistry, 2019, 43, 7065-7073.	2.8	23
24	Hierarchical honeycomb-like networks of CuCo–P@Ni(OH)2 nanosheet arrays enabling high-performance hybrid supercapacitors. Journal of Alloys and Compounds, 2020, 838, 155626.	5 . 5	23
25	Synthesis of honeycomb-like nickel-manganese sulfide composite nanosheets as advanced battery-type electrodes for hybrid supercapacitor. Materials Letters, 2019, 255, 126505.	2.6	22
26	Bimetallic Copper Tin Sulfide Nanosheet Arrays Encapsulated in Nitrogen-Doped Carbon Shells for Boosted Sodium Storage Performance. ACS Applied Energy Materials, 2021, 4, 8572-8582.	5.1	19
27	Coupling Bimetallic NiMn-MOF Nanosheets on NiCo2O4 Nanowire Arrays with Boosted Electrochemical Performance for Hybrid Supercapacitor. Materials Research Bulletin, 2022, 149, 111707.	5.2	19
28	Mixed phase Mo-doped CoSe2 nanosheets encapsulated in N-doped carbon shell with boosted sodium storage performance. Journal of Alloys and Compounds, 2022, 922, 166265.	5 . 5	12
29	TiO ₂ -Based Nanomaterials for Advanced Environmental and Energy-Related Applications. Journal of Nanomaterials, 2016, 2016, 1-3.	2.7	9
30	Multifunctional ZnO interfaces with hierarchical micro- andÂnanostructures: bio-inspiration from the compound eyes ofÂbutterflies. Applied Physics A: Materials Science and Processing, 2010, 100, 57-61.	2.3	4
31	Synthesis and characterization of ultrathin single-crystalline cerium oxide nanorods. , 2010, , .		o