Won-Jae Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3084126/publications.pdf

Version: 2024-02-01

44 papers

7,581 citations

30 h-index 42 g-index

44 all docs 44 docs citations

times ranked

44

7174 citing authors

#	Article	IF	CITATIONS
1	Identification and characterization of GAL4 drivers that mark distinct cell types and regions in the <i>Drosophila</i> adult gut. Journal of Neurogenetics, 2021, 35, 33-44.	1.4	8
2	Response of theÂmicrobiome–gut–brain axis in Drosophila to amino acid deficit. Nature, 2021, 593, 570-574.	27.8	53
3	Bacterial Nucleoside Catabolism Controls Quorum Sensing and Commensal-to-Pathogen Transition in the Drosophila Gut. Cell Host and Microbe, 2020, 27, 345-357.e6.	11.0	31
4	Delipidation Destresses Drosophila. Immunity, 2020, 52, 215-217.	14.3	O
5	Drosophila as a model system for deciphering the â€~host physiology–nutrition–microbiome' axis. Current Opinion in Insect Science, 2020, 41, 112-119.	4.4	8
6	Stealing from the Future: Injured Larvae Spend Stem Cell Deposits. Cell Host and Microbe, 2019, 26, 301-303.	11.0	4
7	Targeted knockout of duox causes defects in zebrafish growth, thyroid development, and social interaction. Journal of Genetics and Genomics, 2019, 46, 101-104.	3.9	7
8	The role of commensal microbes in the lifespan of Drosophila melanogaster. Aging, 2019, 11, 4611-4640.	3.1	44
9	Inflammation-Modulated Metabolic Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila. Cell Host and Microbe, 2018, 23, 338-352.e5.	11.0	79
10	Immune–metabolic interactions during systemic and enteric infection in Drosophila. Current Opinion in Insect Science, 2018, 29, 21-26.	4.4	41
11	Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health. Cell Metabolism, 2017, 25, 522-534.	16.2	108
12	Microbiota, Gut Physiology, and Insect Immunity. Advances in Insect Physiology, 2017, , 111-138.	2.7	45
13	Synthesis of a highly HOCl-selective fluorescent probe and its use for imaging HOCl in cells and organisms. Nature Protocols, 2016, 11, 1219-1228.	12.0	148
14	Drosophila–Acetobacter as a Model System for Understanding Animal–Microbiota Interactions. , 2016, , 143-158.		1
15	Uracil-induced signaling pathways for DUOX-dependent gut immunity. Fly, 2015, 9, 115-120.	1.7	17
16	Functional genomic and metagenomic approaches to understanding gut microbiota–animal mutualism. Current Opinion in Microbiology, 2015, 24, 38-46.	5.1	48
17	Bacterial Uracil Modulates Drosophila DUOX-Dependent Gut Immunity via Hedgehog-Induced Signaling Endosomes. Cell Host and Microbe, 2015, 17, 191-204.	11.0	105
18	Got Lactobacillus? Commensals Power Growth. Cell Host and Microbe, 2015, 18, 388-390.	11.0	5

#	Article	IF	CITATIONS
19	Mechanisms of Systemic Wound Response in Drosophila. Current Topics in Developmental Biology, 2014, 108, 153-183.	2.2	25
20	Role of DUOX in gut inflammation: lessons from Drosophila model of gut-microbiota interactions. Frontiers in Cellular and Infection Microbiology, 2014, 3, 116.	3.9	161
21	Gut microbiota–generated metabolites in animal health and disease. Nature Chemical Biology, 2014, 10, 416-424.	8.0	539
22	Drosophila as a model for intestinal dysbiosis and chronic inflammatory diseases. Developmental and Comparative Immunology, 2014, 42, 102-110.	2.3	71
23	Homeostasis between gut-associated microorganisms and the immune system in Drosophila. Current Opinion in Immunology, 2014, 30, 48-53.	5.5	37
24	Insect Gut Bacterial Diversity Determined by Environmental Habitat, Diet, Developmental Stage, and Phylogeny of Host. Applied and Environmental Microbiology, 2014, 80, 5254-5264.	3.1	591
25	How Microbiomes Influence Metazoan Development:Insights from History and <i>Drosophila</i> Modeling of Gut-Microbe Interactions. Annual Review of Cell and Developmental Biology, 2013, 29, 571-592.	9.4	128
26	Bacterial-Derived Uracil as a Modulator of Mucosal Immunity and Gut-Microbe Homeostasis in Drosophila. Cell, 2013, 153, 797-811.	28.9	300
27	Draft Genome Sequence of Lactobacillus plantarum Strain WJL, a Drosophila Gut Symbiont. Genome Announcements, 2013, 1, .	0.8	14
28	Draft Genome Sequence of Commensalibacter intestini A911T, a Symbiotic Bacterium Isolated from Drosophila melanogaster Intestine. Journal of Bacteriology, 2012, 194, 1246-1246.	2.2	10
29	Genetic evidence of a redox-dependent systemic wound response via Hayan Protease-Phenoloxidase system in <i>Drosophila</i> . EMBO Journal, 2012, 31, 1253-1265.	7.8	99
30	<i>Drosophila</i> Microbiome Modulates Host Developmental and Metabolic Homeostasis via Insulin Signaling. Science, 2011, 334, 670-674.	12.6	856
31	A specific and sensitive method for detection of hypochlorous acid for the imaging of microbe-induced HOCl production. Chemical Communications, 2011, 47, 4373.	4.1	238
32	Dual oxidase in mucosal immunity and host–microbe homeostasis. Trends in Immunology, 2010, 31, 278-287.	6.8	183
33	Innate immunity and gut–microbe mutualism in Drosophila. Developmental and Comparative Immunology, 2010, 34, 369-376.	2.3	144
34	Bacterial-modulated host immunity and stem cell activation for gut homeostasis: Figure 1 Genes and Development, 2009, 23, 2260-2265.	5.9	49
35	Coordination of multiple dual oxidase–regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nature Immunology, 2009, 10, 949-957.	14.5	301
36	Regulation of DUOX by the GÎ \pm q-Phospholipase CÎ 2 -Ca2+ Pathway in Drosophila Gut Immunity. Developmental Cell, 2009, 16, 386-397.	7.0	196

#	Article	IF	CITATIONS
37	Innate Immune Homeostasis by the Homeobox Gene <i>Caudal</i> and Commensal-Gut Mutualism in <i>Drosophila</i> . Science, 2008, 319, 777-782.	12.6	766
38	Phylogenetic Characterization of Two Novel Commensal Bacteria Involved with Innate Immune Homeostasis in <i>Drosophila melanogaster</i> . Applied and Environmental Microbiology, 2008, 74, 6171-6177.	3.1	85
39	Involvement of pro-phenoloxidase 3 in lamellocyte-mediated spontaneous melanization in Drosophila. Molecules and Cells, 2008, 26, 606-10.	2.6	38
40	An essential complementary role of NF- \hat{l}° B pathway to microbicidal oxidants in Drosophila gut immunity. EMBO Journal, 2006, 25, 3693-3701.	7.8	150
41	A Direct Role for Dual Oxidase in <i>Drosophila</i> Gut Immunity. Science, 2005, 310, 847-850.	12.6	705
42	An Antioxidant System Required for Host Protection against Gut Infection in Drosophila. Developmental Cell, 2005, 8, 125-132.	7.0	305
43	The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunology, 2003, 4, 478-484.	14.5	533
44	An Immune-Responsive Serpin Regulates the Melanization Cascade in Drosophila. Developmental Cell, 2002, 3, 581-592.	7.0	305