Massimo Tallarida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3083908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancement of phase stability and optoelectronic performance of BiFeO ₃ thin films <i>via</i> cation co-substitution. Journal of Materials Chemistry C, 2021, 9, 330-339.	5.5	11
2	In situ Nearâ€Ambient Pressure Xâ€ray Photoelectron Spectroscopy Reveals the Influence of Photon Flux and Water on the Stability of Halide Perovskite. ChemSusChem, 2020, 13, 5722-5730.	6.8	15
3	Amorphous Gadolinium Aluminate as a Dielectric and Sulfur for Indium Phosphide Passivation. ACS Applied Electronic Materials, 2019, 1, 2190-2201.	4.3	8
4	An (In Situ)2 Approach: ALD and resPES Applied to Al2O3, HfO2, and TiO2 Ultrathin Films. , 2018, , 18-26.		7
5	A facile corrosion approach to the synthesis of highly active CoO _x water oxidation catalysts. Journal of Materials Chemistry A, 2017, 5, 5171-5177.	10.3	81
6	New insights into water photooxidation on reductively pretreated hematite photoanodes. Physical Chemistry Chemical Physics, 2017, 19, 21807-21817.	2.8	10
7	Sacrificial Self-Assembled Monolayers for the Passivation of GaAs (100) Surfaces and Interfaces. Chemistry of Materials, 2016, 28, 5689-5701.	6.7	20
8	Electronic properties of atomic layer deposition films, anatase and rutile TiO ₂ studied by resonant photoemission spectroscopy. Journal Physics D: Applied Physics, 2016, 49, 275304.	2.8	29
9	Graphene oxide monolayers as atomically thin seeding layers for atomic layer deposition of metal oxides. Nanoscale, 2015, 7, 10781-10789.	5.6	22
10	Thermal and plasma enhanced atomic layer deposition of TiO2: Comparison of spectroscopic and electric properties. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	2.1	32
11	Si microstructures laminated with a nanolayer of TiO ₂ as long-term stable and effective photocathodes in PEC devices. Nanoscale, 2015, 7, 7726-7733.	5.6	24
12	Quantum size effects in TiO ₂ thin films grown by atomic layer deposition. Beilstein Journal of Nanotechnology, 2014, 5, 77-82.	2.8	14
13	On the scalability of doped hafnia thin films. Applied Physics Letters, 2014, 104, .	3.3	5
14	Unification of Catalytic Water Oxidation and Oxygen Reduction Reactions: Amorphous Beat Crystalline Cobalt Iron Oxides. Journal of the American Chemical Society, 2014, 136, 17530-17536.	13.7	575
15	Study of InP Surfaces after Wet Chemical Treatments. ECS Journal of Solid State Science and Technology, 2014, 3, N3016-N3022.	1.8	25
16	Capacitance and conductance versus voltage characterization of Al2O3 layers prepared by plasma enhanced atomic layer deposition at 25 °Câ‰≇€‰T â‰≇€‰200 °C. Journal of Vacuum Scienc Vacuum, Surfaces and Films, 2014, 32, 01A107.	e an d Tecl	hnzałogy A:
17	Modification of Hematite Electronic Properties with Trimethyl Aluminum to Enhance the Efficiency of Photoelectrodes. Journal of Physical Chemistry Letters, 2014, 5, 3582-3587.	4.6	21
18	Surface Functionalization of Nanostructured Fe ₂ O ₃ Polymorphs: From Design to Light-Activated Applications. ACS Applied Materials & amp; Interfaces, 2013, 5, 7130-7138.	8.0	44

MASSIMO TALLARIDA

#	Article	IF	CITATIONS
19	Linear dichroism in ALD layers of TiO2. Environmental Earth Sciences, 2013, 70, 3785-3795.	2.7	9
20	Height distribution of atomic force microscopy images as a tool for atomic layer deposition characterization. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, .	2.1	6
21	Structural and luminescence properties of HfO2 nanocrystals grown by atomic layer deposition on SiC/SiO2 core/shell nanowires. Scripta Materialia, 2013, 69, 744-747.	5.2	7
22	Structural and Magnetic Studies on Iron Oxide and Iron-Magnesium Oxide Thin Films Deposited Using Ferrocene and (Dimethylaminomethyl)ferrocene Precursors. ECS Journal of Solid State Science and Technology, 2013, 2, N45-N54.	1.8	23
23	Surface Chemistry and Interface Formation during the Atomic Layer Deposition of Alumina from Trimethylaluminum and Water on Indium Phosphide. Chemistry of Materials, 2013, 25, 1078-1091.	6.7	33
24	(Invited) III-V/Oxide Interfaces Investigated with Synchrotron Radiation Photoemission Spectroscopy. ECS Transactions, 2013, 50, 123-128.	0.5	0
25	Study of InP Surfaces after Wet Chemical Treatments. ECS Transactions, 2013, 58, 297-303.	0.5	1
26	Understanding the Interface Reactions of Rutile TiO ₂ Grown by Atomic Layer Deposition on Oxidized Ruthenium. ECS Journal of Solid State Science and Technology, 2013, 2, N23-N27.	1.8	8
27	Ellipsometry and XPS comparative studies of thermal and plasma enhanced atomic layer deposited Al2O3-films. Beilstein Journal of Nanotechnology, 2013, 4, 732-742.	2.8	93
28	<i>In situ</i> study of the atomic layer deposition of HfO2 on Si. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	15
29	In situALD experiments with synchrotron radiation photoelectron spectroscopy. Semiconductor Science and Technology, 2012, 27, 074010.	2.0	23
30	GaAs clean up studied with synchrotron radiation photoemission. IOP Conference Series: Materials Science and Engineering, 2012, 41, 012003.	0.6	2
31	Substrate Reactivity Effects in the Atomic Layer Deposition of Aluminum Oxide from Trimethylaluminum on Ruthenium. Chemistry of Materials, 2011, 23, 3159-3168.	6.7	35
32	Atomic layer deposition of nanolaminate oxide films on Si. Journal of Nanoparticle Research, 2011, 13, 5975-5983.	1.9	22
33	Atomic layer deposition reactor for fabrication of metal oxides. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1287-1292.	0.8	6
34	Growth of TiO ₂ with Thermal and Plasma Enhanced Atomic Layer Deposition. Journal of Nanoscience and Nanotechnology, 2011, 11, 8049-8053.	0.9	14
35	Surface chemistry and Fermi level movement during the self-cleaning of GaAs by trimethyl-aluminum. Applied Physics Letters, 2011, 99, .	3.3	37
36	Atomic Layer Deposition of Ruthenium Films from (Ethylcyclopentadienyl)(pyrrolyl)ruthenium and Oxygen. Journal of the Electrochemical Society, 2011, 158, D158.	2.9	52

MASSIMO TALLARIDA

#	Article	IF	CITATIONS
37	Determination of interfacial layers in high-k nanomaterials by ADXPS measurements. , 2010, , .		0
38	Structure and morphology of Ru films grown by atomic layer deposition from 1-ethyl-1'-methyl-ruthenocene. Journal of Crystal Growth, 2010, 312, 2025-2032.	1.5	24
39	In situ studies of the atomic layer deposition of thin HfO2 dielectrics by ultra high vacuum atomic force microscope. Thin Solid Films, 2010, 518, 4688-4691.	1.8	14
40	The band gap and band offset in ultrathin oxide–semiconductor heterostructures. Superlattices and Microstructures, 2010, 47, 369-376.	3.1	6
41	ALD on High Mobility Channels: Engineering the Proper Gate Stack Passivation. ECS Transactions, 2010, 33, 9-23.	0.5	4
42	Atomic Layer Deposition and Characterization of Erbium Oxide-Doped Zirconium Oxide Thin Films. Journal of the Electrochemical Society, 2010, 157, G193.	2.9	11
43	Band alignment of high , 2010, , .		0
44	HfO[sub 2]â^•Si interface formation in atomic layer deposition films: An in situ investigation. Journal of Vacuum Science & Technology B, 2009, 27, 300.	1.3	13
45	Novel "In-situ ² " Approach to Modified ALD Processes for Nano-functional Metal Oxide Films. ECS Transactions, 2009, 25, 253-261.	0.5	5
46	Interface Reactions in Ultrathin Functional Dielectric Films. Advanced Engineering Materials, 2009, 11, 269-274.	3.5	4
47	In‣itu Studies of ALD Growth of Hafnium Oxide Films. Advanced Engineering Materials, 2009, 11, 265-268.	3.5	8
48	In situ measurements of the atomic layer deposition of high-k dielectrics by atomic force microscope for advanced microsystems. , 2009, , .		1
49	Study of silicon/oxides interfaces by means of Si2p resonant photoemission. Thin Solid Films, 2008, 517, 447-449.	1.8	1
50	The initial atomic layer deposition of HfO2â^•Si(001) as followed in situ by synchrotron radiation photoelectron spectroscopy. Journal of Applied Physics, 2008, 104, 064116.	2.5	28
51	Electronic signature of MnAs phases in bare and buried films grown on GaAs(001). Journal of Vacuum Science & Technology B, 2008, 26, 1530.	1.3	0
52	Electronic states in arsenic-decapped MnAs (11Â ⁻ 00) films grown on GaAs(001): A photoemission spectroscopy study. Applied Physics Letters, 2008, 92, 084103.	3.3	3
53	Synchrotron radiation x-ray photoelectron spectroscopy study on the interface chemistry of high-kâ€^PrxAl2â^xO3â€^(x=O–2) dielectrics on TiN for dynamic random access memory applications. Journal of Applied Physics, 2007, 102, .	2.5	31
54	Study of bulk and interface defects in silicon oxide with X-ray absorption spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 144, 23-26.	3.5	5

MASSIMO TALLARIDA

#	Article	IF	CITATIONS
55	Al-oxynitrides as a buffer layer for Pr2O3/SiC interfaces. Materials Science in Semiconductor Processing, 2006, 9, 945-948.	4.0	15
56	Resonant photoemission at the oxygen K edge as a tool to study the electronic properties of defects at SiO2 /Si and SiO2 /SiC interfaces. Superlattices and Microstructures, 2006, 40, 393-398.	3.1	4
57	X-ray absorption and photoemission spectroscopy of 3C- and 4H-SiC. Surface Science, 2006, 600, 3879-3883.	1.9	15
58	Atom-Specific Identification of Adsorbed Chiral Molecules by Photoemission. Physical Review Letters, 2005, 95, 107601.	7.8	45
59	Thin manganese films on Si(111)-(7 × 7): electronic structure and strain in silicide formation. Journal Physics D: Applied Physics, 2004, 37, 1083-1090.	2.8	60
60	Self-organization of Pb thin films on Cu(111) induced by quantum size effects. Physical Review B, 2004, 70, .	3.2	51
61	Reconstruction of Cleaved 6H-SiC Surfaces. Materials Science Forum, 2004, 457-460, 391-394.	0.3	4
62	Adsorption of 2,3-butanediol on Si(1 0 0). Surface Science, 2004, 559, 179-185.	1.9	31
63	Differential reflectivity and angle-resolved photoemission of PbS(1 0 0). Surface Science, 2001, 482-485, 659-663.	1.9	4