List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3083652/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitrogen addition promotes soil microbial beta diversity and the stochastic assembly. Science of the Total Environment, 2022, 806, 150569.	3.9	26
2	Unexpected high retention of ¹⁵ N″abeled nitrogen in a tropical legume forest under longâ€ŧerm nitrogen enrichment. Global Change Biology, 2022, 28, 1529-1543.	4.2	10
3	Microbial assembly adapted to low-P soils in three subtropical forests by increasing the maximum rate of substrate conversion of acid phosphatases but not by decreasing the half-saturation constant. European Journal of Soil Biology, 2022, 108, 103377.	1.4	6
4	Divergent responses of soil microbial functional groups to long-term high nitrogen presence in the tropical forests. Science of the Total Environment, 2022, 821, 153251.	3.9	9
5	Mycorrhizal fungi and phosphatase involvement in rhizosphere phosphorus transformations improves plant nutrition during subtropical forest succession. Soil Biology and Biochemistry, 2021, 153, 108099.	4.2	56
6	13-year nitrogen addition increases nonstructural carbon pools in subtropical forest trees in southern China. Forest Ecology and Management, 2021, 481, 118748.	1.4	10
7	Retention and partitioning of 15N-labeled deposited N in a tropical plantation forest. Biogeochemistry, 2021, 152, 237-251.	1.7	4
8	Long-Term Nitrogen Addition Decreases Soil Carbon Mineralization in an N-Rich Primary Tropical Forest, 2021, 12, 734.	0.9	9
9	Leaf hydraulic acclimation to nitrogen addition of two dominant tree species in a subtropical forest. Science of the Total Environment, 2021, 771, 145415.	3.9	8
10	Effect of Long-Term Nitrogen and Phosphorus Additions on Understory Plant Nutrients in a Primary Tropical Forest. Forests, 2021, 12, 803.	0.9	4
11	Adaptation of Soil Fungal Community Structure and Assembly to Long- Versus Short-Term Nitrogen Addition in a Tropical Forest. Frontiers in Microbiology, 2021, 12, 689674.	1.5	20
12	Soil phosphorus availability affects diazotroph communities during vegetation succession in lowland subtropical forests. Applied Soil Ecology, 2021, 166, 104009.	2.1	11
13	Negative effects of long-term phosphorus additions on understory plants in a primary tropical forest. Science of the Total Environment, 2021, 798, 149306.	3.9	10
14	Characteristics of Dissolved Organic Matter and Dissolved Lignin Phenols in Tropical Forest Soil Solutions during Rainy Seasons and Their Responses to Nitrogen Deposition. ACS Earth and Space Chemistry, 2021, 5, 3150-3158.	1.2	7
15	The responses of carbon- and nitrogen-acquiring enzymes to nitrogen and phosphorus additions in two plantations in southern China. Journal of Forestry Research, 2020, 31, 1319-1324.	1.7	5
16	Long-term phosphorus addition downregulates microbial investments on enzyme productions in a mature tropical forest. Journal of Soils and Sediments, 2020, 20, 921-930.	1.5	15
17	Responses of soil microbial resource limitation to multiple fertilization strategies. Soil and Tillage Research, 2020, 196, 104474.	2.6	54
18	Divergent responses of soil organic carbon accumulation to 14Âyears of nitrogen addition in two typical subtropical forests. Science of the Total Environment, 2020, 707, 136104.	3.9	12

#	Article	IF	CITATIONS
19	Substrate stoichiometry determines nitrogen fixation throughout succession in southern Chinese forests. Ecology Letters, 2020, 23, 336-347.	3.0	52
20	Effects of human disturbance activities and environmental change factors on terrestrial nitrogen fixation. Global Change Biology, 2020, 26, 6203-6217.	4.2	35
21	Longâ€ŧerm effects of 7â€year warming experiment in the field on leaf hydraulic and economic traits of subtropical tree species. Global Change Biology, 2020, 26, 7144-7157.	4.2	18
22	Global response patterns of plant photosynthesis to nitrogen addition: A metaâ€analysis. Global Change Biology, 2020, 26, 3585-3600.	4.2	139
23	Responses of Foliar Nutrient Status and Stoichiometry to Nitrogen Addition in Different Ecosystems: A Metaâ€analysis. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005347.	1.3	25
24	Divergent effects of a 6-year warming experiment on the nutrient productivities of subtropical tree species. Forest Ecology and Management, 2020, 461, 117952.	1.4	8
25	Effects of 14-year continuous nitrogen addition on soil arylsulfatase and phosphodiesterase activities in a mature tropical forest. Global Ecology and Conservation, 2020, 22, e00934.	1.0	9
26	Longâ€ŧerm nitrogen addition modifies microbial composition and functions for slow carbon cycling and increased sequestration in tropical forest soil. Global Change Biology, 2019, 25, 3267-3281.	4.2	121
27	Topography Modulates Effects of Nitrogen Deposition on Asymbiotic N ₂ Fixation in Soil but not Litter or Moss in a Secondary Karst Forest. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3015-3023.	1.3	17
28	Effects of phosphorus and nitrogen fertilization on soil arylsulfatase activity and sulfur availability of two tropical plantations in southern China. Forest Ecology and Management, 2019, 453, 117613.	1.4	12
29	Data of ecoenzyme activities in throughfall and rainfall samples taken at five subtropical forests in southern China. Data in Brief, 2019, 26, 103906.	0.5	3
30	Global pattern and controls of biological nitrogen fixation under nutrient enrichment: A metaâ€analysis. Global Change Biology, 2019, 25, 3018-3030.	4.2	110
31	Cropland conversion changes the status of microbial resource limitation in degraded karst soil. Geoderma, 2019, 352, 197-203.	2.3	20
32	Effects of urbanization on plant phosphorus availability in broadleaf and needleleaf subtropical forests. Science of the Total Environment, 2019, 684, 50-57.	3.9	8
33	Sulfur deposition still contributes to forest soil acidification in the Pearl River Delta, South China, despite the control of sulfur dioxide emission since 2001. Environmental Science and Pollution Research, 2019, 26, 12928-12939.	2.7	11
34	A potential source of soil ecoenzymes: From the phyllosphere to soil via throughfall. Applied Soil Ecology, 2019, 139, 25-28.	2.1	9
35	The Inhibitory Effects of Nitrogen Deposition on Asymbiotic Nitrogen Fixation are Divergent Between a Tropical and a Temperate Forest. Ecosystems, 2019, 22, 955-967.	1.6	9
36	Effect of nitrogen addition on DOC leaching and chemical exchanges on canopy leaves in Guangdong Province, China. Journal of Forestry Research, 2019, 30, 1707-1713.	1.7	4

#	Article	IF	CITATIONS
37	Effects of long-term nitrogen deposition on phosphorus leaching dynamics in a mature tropical forest. Biogeochemistry, 2018, 138, 215-224.	1.7	40
38	Responses of soil phosphorus availability to nitrogen addition in a legume and a non-legume plantation. Geoderma, 2018, 322, 12-18.	2.3	41
39	Plant acclimation to long-term high nitrogen deposition in an N-rich tropical forest. Proceedings of the United States of America, 2018, 115, 5187-5192.	3.3	164
40	Responses of soil microbial community to continuous experimental nitrogen additions for 13 years in a nitrogen-rich tropical forest. Soil Biology and Biochemistry, 2018, 121, 103-112.	4.2	173
41	Effects of simulated N deposition on foliar nutrient status, N metabolism and photosynthetic capacity of three dominant understory plant species in a mature tropical forest. Science of the Total Environment, 2018, 610-611, 555-562.	3.9	71
42	Nitrogen addition reduces soil bacterial richness, while phosphorus addition alters community composition in an old-growth N-rich tropical forest in southern China. Soil Biology and Biochemistry, 2018, 127, 22-30.	4.2	84
43	Stoichiometry controls asymbiotic nitrogen fixation and its response to nitrogen inputs in a nitrogenâ€ s aturated forest. Ecology, 2018, 99, 2037-2046.	1.5	35
44	Different responses of asymbiotic nitrogen fixation to nitrogen addition between disturbed and rehabilitated subtropical forests. Science of the Total Environment, 2017, 601-602, 1505-1512.	3.9	34
45	Patterns and mechanisms of responses by soil microbial communities to nitrogen addition. Soil Biology and Biochemistry, 2017, 115, 433-441.	4.2	314
46	Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest. Geoderma, 2017, 285, 57-63.	2.3	95
47	Effects of nitrogen and phosphorus additions on nitrous oxide emission in a nitrogen-rich and two nitrogen-limited tropical forests. Biogeosciences, 2016, 13, 3503-3517.	1.3	25
48	High retention of ¹⁵ Nâ€labeled nitrogen deposition in a nitrogen saturated oldâ€growth tropical forest. Global Change Biology, 2016, 22, 3608-3620.	4.2	53
49	Nitrogen saturation in humid tropical forests after 6Âyears of nitrogen and phosphorus addition: hypothesis testing. Functional Ecology, 2016, 30, 305-313.	1.7	74
50	Effects of nitrogen and phosphorus additions on soil methane uptake in disturbed forests. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 3089-3100.	1.3	19
51	Effects of phosphorus addition with and without nitrogen addition on biological nitrogen fixation in tropical legume and non-legume tree plantations. Biogeochemistry, 2016, 131, 65-76.	1.7	46
52	Biological nitrogen fixation and its response to nitrogen input in two mature tropical plantations with and without legume trees. Biology and Fertility of Soils, 2016, 52, 665-674.	2.3	43
53	Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species. Plant and Soil, 2016, 399, 61-74.	1.8	47
54	Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Scientific Reports, 2015, 5, 14378.	1.6	60

#	Article	IF	CITATIONS
55	Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests. Scientific Reports, 2015, 5, 7923.	1.6	17
56	Urbanization in China drives soil acidification of Pinus massoniana forests. Scientific Reports, 2015, 5, 13512.	1.6	15
57	Methane uptake in forest soils along an urban-to-rural gradient in Pearl River Delta, South China. Scientific Reports, 2015, 4, 5120.	1.6	12
58	Urbanization in China changes the composition and main sources of wet inorganic nitrogen deposition. Environmental Science and Pollution Research, 2015, 22, 6526-6534.	2.7	37
59	Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis. Environmental Pollution, 2015, 206, 352-360.	3.7	92
60	CAN Canopy Addition of Nitrogen Better Illustrate the Effect of Atmospheric Nitrogen Deposition on Forest Ecosystem?. Scientific Reports, 2015, 5, 11245.	1.6	86
61	Divergent Responses of Soil Buffering Capacity to Long-Term N Deposition in Three Typical Tropical Forests with Different Land-Use History. Environmental Science & Technology, 2015, 49, 4072-4080.	4.6	101
62	Responses of soil acid phosphatase and beta-glucosidase to nitrogen and phosphorus addition in two subtropical forests in southern China. European Journal of Soil Biology, 2015, 68, 77-84.	1.4	56
63	Research on acidification in forest soil driven by atmospheric nitrogen deposition. Acta Ecologica Sinica, 2014, 34, 302-310.	0.9	25
64	Nitrogen deposition contributes to soil acidification in tropical ecosystems. Global Change Biology, 2014, 20, 3790-3801.	4.2	398
65	Effects of Experimental Nitrogen and Phosphorus Addition on Litter Decomposition in an Old-Growth Tropical Forest. PLoS ONE, 2013, 8, e84101.	1.1	63
66	Interactive Effects of Nitrogen and Phosphorus on Soil Microbial Communities in a Tropical Forest. PLoS ONE, 2013, 8, e61188.	1.1	120
67	Nutrient Limitation in Three Lowland Tropical Forests in Southern China Receiving High Nitrogen Deposition: Insights from Fine Root Responses to Nutrient Additions. PLoS ONE, 2013, 8, e82661.	1.1	44
68	The ¹⁵ N natural abundance of the N lost from an Nâ€saturated subtropical forest in southern China. Journal of Geophysical Research, 2012, 117, .	3.3	39
69	Large difference of inhibitive effect of nitrogen deposition on soil methane oxidation between plantations with Nâ€fixing tree species and nonâ€Nâ€fixing tree species. Journal of Geophysical Research, 2012, 117, .	3.3	39
70	Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biology and Biochemistry, 2012, 44, 31-38.	4.2	379
71	Nitrogen deposition and forest nitrogen cycling along an urban–rural transect in southern China. Global Change Biology, 2011, 17, 872-885.	4.2	182
72	Nitrogen deposition and its ecological impact in China: An overview. Environmental Pollution, 2011, 159, 2251-2264.	3.7	652

#	Article	IF	CITATIONS
73	Soil-atmosphere exchange of greenhouse gases in subtropical plantations of indigenous tree species. Plant and Soil, 2010, 335, 213-227.	1.8	31
74	Effects of experimental nitrogen additions on plant diversity in an oldâ€growth tropical forest. Global Change Biology, 2010, 16, 2688-2700.	4.2	227
75	Large Loss of Dissolved Organic Nitrogen from Nitrogen-Saturated Forests in Subtropical China. Ecosystems, 2009, 12, 33-45.	1.6	77
76	Effects of elevated nitrogen deposition on soil microbial biomass carbon in major subtropical forests of southern China. Frontiers of Forestry in China: Selected Publications From Chinese Universities, 2009, 4, 21-27.	0.2	19
77	Nitrogen leaching in response to increased nitrogen inputs in subtropical monsoon forests in southern China. Forest Ecology and Management, 2009, 257, 332-342.	1.4	90
78	Emissions of nitrous oxide from three tropical forests in Southern China in response to simulated nitrogen deposition. Plant and Soil, 2008, 306, 221-236.	1.8	106
79	Seedling growth response of two tropical tree species to nitrogen deposition in southern China. European Journal of Forest Research, 2008, 127, 275-283.	1.1	66
80	Nitrogen addition reduces soil respiration in a mature tropical forest in southern China. Global Change Biology, 2008, 14, 403-412.	4.2	382
81	Methane uptake responses to nitrogen deposition in three tropical forests in southern China. Journal of Geophysical Research, 2008, 113, .	3.3	61
82	Response of nutrient dynamics of decomposing pine (Pinus massoniana) needles to simulated N deposition in a disturbed and a rehabilitated forest in tropical China. Ecological Research, 2007, 22, 649-658.	0.7	30
83	Response of soil respiration to simulated N deposition in a disturbed and a rehabilitated tropical forest in southern China. Plant and Soil, 2007, 296, 125-135.	1.8	68
84	Cumulative effects of nitrogen additions on litter decomposition in three tropical forests in southern China. Plant and Soil, 2007, 297, 233-242.	1.8	96
85	Response of Litter Decomposition to Simulated N Deposition in Disturbed, Rehabilitated and Mature Forests in Subtropical China. Plant and Soil, 2006, 282, 135-151.	1.8	205
86	Old-Growth Forests Can Accumulate Carbon in Soils. Science, 2006, 314, 1417-1417.	6.0	411
87	Nitrogen availability in disturbed, rehabilitated and mature forests of tropical China. Forest Ecology and Management, 2003, 175, 573-583.	1.4	124
88	Structure and Organic Matter Dynamics of a Human-Impacted Pine Forest in a MAB Reserve of Subtropical China. Biotropica, 1995, 27, 276.	0.8	57
89	The Effect of Simulated Nitrogen Deposition on the Emission of Carbonyl Compounds from Ormosia pinnata and Cinnamomum burmannii. Expert Opinion on Environmental Biology, 0, s1, .	0.2	1
90	Long-term nitrogen deposition does not exacerbate soil acidification in tropical broadleaf plantations. Environmental Research Letters, 0, , .	2.2	2