
Liang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3083476/publications.pdf Version: 2024-02-01

LIANC CHEN

#	Article	IF	CITATIONS
1	Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy. Scientific Reports, 2015, 5, 17422.	1.6	219
2	Effect of pH-Responsive Alginate/Chitosan Multilayers Coating on Delivery Efficiency, Cellular Uptake and Biodistribution of Mesoporous Silica Nanoparticles Based Nanocarriers. ACS Applied Materials & Interfaces, 2014, 6, 8447-8460.	4.0	209
3	BMP-2 Derived Peptide and Dexamethasone Incorporated Mesoporous Silica Nanoparticles for Enhanced Osteogenic Differentiation of Bone Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2015, 7, 15777-15789.	4.0	191
4	Three-dimensional porous scaffold by self-assembly of reduced graphene oxide and nano-hydroxyapatite composites for bone tissue engineering. Carbon, 2017, 116, 325-337.	5.4	191
5	Doxorubicin-loaded electrospun poly(l-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment. Journal of Materials Chemistry B, 2013, 1, 4601.	2.9	174
6	In vitro and in vivo studies of electroactive reduced graphene oxide-modified nanofiber scaffolds for peripheral nerve regeneration. Acta Biomaterialia, 2019, 84, 98-113.	4.1	174
7	Au/Polypyrrole@Fe ₃ O ₄ Nanocomposites for MR/CT Dual-Modal Imaging Guided-Photothermal Therapy: An <i>in Vitro</i> Study. ACS Applied Materials & Interfaces, 2015, 7, 4354-4367.	4.0	128
8	Multimetal-MOF-derived transition metal alloy NPs embedded in an N-doped carbon matrix: highly active catalysts for hydrogenation reactions. Journal of Materials Chemistry A, 2016, 4, 10254-10262.	5.2	127
9	Inorganic Strengthened Hydrogel Membrane as Regenerative Periosteum. ACS Applied Materials & Interfaces, 2017, 9, 41168-41180.	4.0	126
10	Polyelectrolyte multilayer functionalized mesoporous silica nanoparticles for pH-responsive drug delivery: layer thickness-dependent release profiles and biocompatibility. Journal of Materials Chemistry B, 2013, 1, 5886.	2.9	122
11	Threeâ€Dimensional Nitrogenâ€Doped Graphene Nanoribbons Aerogel as a Highly Efficient Catalyst for the Oxygen Reduction Reaction. Small, 2015, 11, 1423-1429.	5.2	114
12	Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(<scp>l</scp> -Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 4137-4148.	4.0	109
13	One-Pot Synthesis of MoS ₂ Nanoflakes with Desirable Degradability for Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 17347-17358.	4.0	104
14	Multifunctional Redox-Responsive Mesoporous Silica Nanoparticles for Efficient Targeting Drug Delivery and Magnetic Resonance Imaging. ACS Applied Materials & Interfaces, 2016, 8, 33829-33841.	4.0	102
15	Effects of Molecular Weight and Its Distribution of PEG Block on Micellization and Thermogellability of PLGA–PEG–PLGA Copolymer Aqueous Solutions. Macromolecules, 2015, 48, 3662-3671.	2.2	95
16	In vitro and in vivo toxicity studies of copper sulfide nanoplates for potential photothermal applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 901-912.	1.7	93
17	Polymer Meets Frustrated Lewis Pair: Secondâ€Generation CO ₂ â€Responsive Nanosystem for Sustainable CO ₂ Conversion. Angewandte Chemie - International Edition, 2018, 57, 9336-9340.	7.2	91
18	Dual-Responsive Mesoporous Silica Nanoparticles Mediated Codelivery of Doxorubicin and Bcl-2 SiRNA for Targeted Treatment of Breast Cancer. Journal of Physical Chemistry C, 2016, 120, 22375-22387.	1.5	88

#	Article	IF	CITATIONS
19	Tumor regression achieved by encapsulating a moderately soluble drug into a polymeric thermogel. Scientific Reports, 2014, 4, 5473.	1.6	87
20	Mesoporous silica nanoparticles for tissueâ€engineering applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1573.	3.3	87
21	Marriage of Albumin–Gadolinium Complexes and MoS ₂ Nanoflakes as Cancer Theranostics for Dual-Modality Magnetic Resonance/Photoacoustic Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 17786-17798.	4.0	81
22	Reversible Self-Assembly of Supramolecular Vesicles and Nanofibers Driven by Chalcogen-Bonding Interactions. Journal of the American Chemical Society, 2018, 140, 7079-7082.	6.6	80
23	Mitochondriaâ€specific nanocatalysts for chemotherapyâ€augmented sequential chemoreactive tumor therapy. Exploration, 2021, 1, 50-60.	5.4	76
24	Enzyme-Based Mesoporous Nanomotors with Near-Infrared Optical Brakes. Journal of the American Chemical Society, 2022, 144, 3892-3901.	6.6	70
25	Density controlled oil uptake and beyond: from carbon nanotubes to graphene nanoribbon aerogels. Journal of Materials Chemistry A, 2015, 3, 20547-20553.	5.2	69
26	Targeted Combination of Antioxidative and Antiâ€Inflammatory Therapy of Rheumatoid Arthritis using Multifunctional Dendrimerâ€Entrapped Gold Nanoparticles as a Platform. Small, 2020, 16, e2005661.	5.2	66
27	Size and charge dual-transformable mesoporous nanoassemblies for enhanced drug delivery and tumor penetration. Chemical Science, 2020, 11, 2819-2827.	3.7	66
28	Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nature Communications, 2019, 10, 4387.	5.8	65
29	Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment. RSC Advances, 2017, 7, 7973-7982.	1.7	62
30	Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects. Journal of Materials Chemistry B, 2018, 6, 740-752.	2.9	62
31	Imparting multi-functionality to covalent organic framework nanoparticles by the dual-ligand assistant encapsulation strategy. Nature Communications, 2021, 12, 4556.	5.8	62
32	Merging metal organic framework with hollow organosilica nanoparticles as a versatile nanoplatform for cancer theranostics. Acta Biomaterialia, 2019, 86, 406-415.	4.1	59
33	A New Approach for the Flocculation Mechanism of Chitosan. Journal of Polymers and the Environment, 2003, 11, 87-92.	2.4	57
34	Near-infrared light triggered drug release from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 2018, 6, 7112-7121.	2.9	57
35	Facile synthesis of novel albumin-functionalized flower-like MoS ₂ nanoparticles for in vitro chemo-photothermal synergistic therapy. RSC Advances, 2016, 6, 13040-13049.	1.7	56
36	Engine-Trailer-Structured Nanotrucks for Efficient Nano-Bio Interactions and Bioimaging-Guided Drug Delivery. CheM, 2020, 6, 1097-1112.	5.8	55

#	Article	IF	CITATIONS
37	Enhancement of Schwann Cells Function Using Graphene-Oxide-Modified Nanofiber Scaffolds for Peripheral Nerve Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 2444-2456.	2.6	54
38	Salt-induced reentrant hydrogel of poly(ethylene glycol)–poly(lactide-co-glycolide) block copolymers. Polymer Chemistry, 2014, 5, 979-991.	1.9	52
39	Synthesis and characterization of poly(glycerol sebacate)-based elastomeric copolyesters for tissue engineering applications. Polymer Chemistry, 2016, 7, 2553-2564.	1.9	50
40	Fabrication of heterogeneous porous bilayered nanofibrous vascular grafts by two-step phase separation technique. Acta Biomaterialia, 2018, 79, 168-181.	4.1	50
41	Perylene Diimide-Grafted Polymeric Nanoparticles Chelated with Gd ³⁺ for Photoacoustic/ <i>T</i> ₁ -Weighted Magnetic Resonance Imaging-Guided Photothermal Therapy. ACS Applied Materials & Interfaces, 2017, 9, 30458-30469.	4.0	48
42	Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil. Journal of Soils and Sediments, 2016, 16, 537-546.	1.5	43
43	CO ₂ â€Crossâ€Linked Frustrated Lewis Networks as Gasâ€Regulated Dynamic Covalent Materials. Angewandte Chemie - International Edition, 2019, 58, 264-268.	7.2	40
44	Revisiting Cationic Phosphorus Dendrimers as a Nonviral Vector for Optimized Gene Delivery Toward Cancer Therapy Applications. Biomacromolecules, 2020, 21, 2502-2511.	2.6	40
45	In situ formation of metal organic framework onto gold nanorods/mesoporous silica with functional integration for targeted theranostics. Chemical Engineering Journal, 2021, 403, 126432.	6.6	40
46	Synthesis of hollow mesoporous silica nanoparticles with tunable shell thickness and pore size using amphiphilic block copolymers as core templates. Dalton Transactions, 2014, 43, 11834.	1.6	38
47	Interfacial Assembly Directed Unique Mesoporous Architectures: From Symmetric to Asymmetric. Accounts of Materials Research, 2020, 1, 100-114.	5.9	38
48	Biomedical Applications of MXenes: From Nanomedicine to Biomaterials. Accounts of Materials Research, 2022, 3, 785-798.	5.9	38
49	Egg white-mediated green synthesis of CuS quantum dots as a biocompatible and efficient 980 nm laser-driven photothermal agent. RSC Advances, 2016, 6, 40480-40488.	1.7	35
50	Rational design of three-dimensional nitrogen-doped carbon nanoleaf networks for high-performance oxygen reduction. Journal of Materials Chemistry A, 2015, 3, 5617-5627.	5.2	32
51	Electrospun nanofibers incorporating self-decomposable silica nanoparticles as carriers for controlled delivery of anticancer drug. RSC Advances, 2015, 5, 65897-65904.	1.7	31
52	Polymer Meets Frustrated Lewis Pair: Secondâ€Generation CO ₂ â€Responsive Nanosystem for Sustainable CO ₂ Conversion. Angewandte Chemie, 2018, 130, 9480-9484.	1.6	30
53	New Ways to Treat Tuberculosis Using Dendrimers as Nanocarriers. Pharmaceutics, 2018, 10, 105.	2.0	28
54	Biodegradable Mesoporous Silica Nanocarrier Bearing Angiogenic QK Peptide and Dexamethasone for Accelerating Angiogenesis in Bone Regeneration. ACS Biomaterials Science and Engineering, 2019, 5, 6766-6778.	2.6	28

#	Article	IF	CITATIONS
55	Surface-Confined Winding Assembly of Mesoporous Nanorods. Journal of the American Chemical Society, 2020, 142, 20359-20367.	6.6	28
56	Macroporous nanofibrous vascular scaffold with improved biodegradability and smooth muscle cells infiltration prepared by dual phase separation technique. International Journal of Nanomedicine, 2018, Volume 13, 7003-7018.	3.3	27
57	Synergism among Polydispersed Amphiphilic Block Copolymers Leading to Spontaneous Physical Hydrogelation upon Heating. Macromolecules, 2020, 53, 7726-7739.	2.2	26
58	Recent Progress on Asymmetric Carbon- and Silica-Based Nanomaterials: From Synthetic Strategies to Their Applications. Nano-Micro Letters, 2022, 14, 45.	14.4	26
59	Novel Hydrogel Material as a Potential Embolic Agent in Embolization Treatments. Scientific Reports, 2016, 6, 32145.	1.6	25
60	One-pot synthesis of AIE based bismuth sulfide nanotheranostics for fluorescence imaging and photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2017, 160, 297-304.	2.5	25
61	Versatile Nanocarrier Based on Functionalized Mesoporous Silica Nanoparticles to Codeliver Osteogenic Gene and Drug for Enhanced Osteodifferentiation. ACS Biomaterials Science and Engineering, 2019, 5, 710-723.	2.6	25
62	Recent developments of mesoporous silica nanoparticles in biomedicine. Emergent Materials, 2020, 3, 381-405.	3.2	25
63	Intrinsically Coupled 3D nGs@CNTs Frameworks as Anode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 7289-7295.	3.2	24
64	Streamlined Mesoporous Silica Nanoparticles with Tunable Curvature from Interfacial Dynamic-Migration Strategy for Nanomotors. Nano Letters, 2021, 21, 6071-6079.	4.5	24
65	Tumor-targeted biodegradable multifunctional nanoparticles for cancer theranostics. Chemical Engineering Journal, 2019, 378, 122171.	6.6	22
66	Solution Self-Assembly of Chalcogen-Bonding Polymer Partners. ACS Macro Letters, 2020, 9, 1102-1107.	2.3	22
67	Highly Sensitive Dissolved Oxygen Sensor with a Sustainable Antifouling, Antiabrasion, and Self-Cleaning Superhydrophobic Surface. ACS Omega, 2019, 4, 1715-1721.	1.6	21
68	Rationally integrating peptide-induced targeting and multimodal therapies in a dual-shell theranostic platform for orthotopic metastatic spinal tumors. Biomaterials, 2021, 275, 120917.	5.7	20
69	^{99m} Tc-Labeled Polyethylenimine-Entrapped Gold Nanoparticles with pH-Responsive Charge Conversion Property for Enhanced Dual Mode SPECT/CT Imaging of Cancer Cells. Langmuir, 2019, 35, 13405-13412.	1.6	19
70	CO ₂ â€Folded Singleâ€Chain Nanoparticles as Recyclable, Improved Carboxylase Mimics. Angewandte Chemie - International Edition, 2020, 59, 18418-18422.	7.2	18
71	Oxygenâ€Independent Sulfate Radical for Stimuliâ€Responsive Tumor Nanotherapy. Advanced Science, 2022, 9, e2200974.	5.6	18
72	A general and green approach to synthesize monodisperse ceria hollow spheres with enhanced photocatalytic activity. RSC Advances, 2015, 5, 80158-80169.	1.7	17

#	Article	IF	CITATIONS
73	Phosphorus dendron nanomicelles as a platform for combination anti-inflammatory and antioxidative therapy of acute lung injury. Theranostics, 2022, 12, 3407-3419.	4.6	17
74	Cyclotriphosphazene-Based "Butterfly―Fluorescence Probe for Lysosome Targeting. Bioconjugate Chemistry, 2021, 32, 1117-1122.	1.8	16
75	Potent Anticancer Efficacy of Firstâ€Inâ€Class Cu II and Au III Metaled Phosphorus Dendrons with Distinct Cell Death Pathways. Chemistry - A European Journal, 2020, 26, 5903-5910.	1.7	15
76	Local Delivery of BMP-2 from Poly(lactic-co-glycolic acid) Microspheres Incorporated into Porous Nanofibrous Scaffold for Bone Tissue Regeneration. Journal of Biomedical Nanotechnology, 2017, 13, 1446-1456.	0.5	14
77	Peptide vaccine-conjugated mesoporous carriers synergize with immunogenic cell death and PD-L1 blockade for amplified immunotherapy of metastatic spinal. Journal of Nanobiotechnology, 2021, 19, 243.	4.2	14
78	Effects of "mature micelle―formation of Pluronic P123 on equilibrium between lactone and carboxylate forms of 10-hydrocamptothecin in water. Polymer Chemistry, 2013, 4, 3245.	1.9	13
79	A Bonded Double-Doped Graphene Nanoribbon Framework for Advanced Electrocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 16649-16655.	4.0	13
80	Coupling metal organic frameworks with molybdenum disulfide nanoflakes for targeted cancer theranostics. Biomaterials Science, 2021, 9, 3306-3318.	2.6	12
81	Engineered Stable Bioactive Per Se Amphiphilic Phosphorus Dendron Nanomicelles as a Highly Efficient Drug Delivery System To Take Down Breast Cancer In Vivo. Biomacromolecules, 2022, 23, 2827-2837.	2.6	12
82	Synthesis and characterization of nanofibrous hollow microspheres with tunable size and morphology via thermally induced phase separation technique. RSC Advances, 2015, 5, 61580-61585.	1.7	11
83	Evolution of Rhodamine B into Nearâ€Infrared Dye by Phototriggered Radical Reaction and Its Application for Lysosomeâ€Specific Liveâ€Cell Imaging. Advanced Optical Materials, 2016, 4, 1367-1372.	3.6	11
84	CO ₂ rossâ€Linked Frustrated Lewis Networks as Gasâ€Regulated Dynamic Covalent Materials. Angewandte Chemie, 2019, 131, 270-274.	1.6	11
85	Light-Click <i>In Situ</i> Self-Assembly of Superhelical Nanofibers and Their Helicity Hierarchy Control. Macromolecules, 2021, 54, 5077-5086.	2.2	11
86	PEGylated (NH 4) x WO 3 nanorods as efficient and stable multifunctional nanoagents for simultaneous CT imaging and photothermal therapy of tumor. Journal of Photochemistry and Photobiology B: Biology, 2017, 174, 10-17.	1.7	10
87	Gasâ€Constructed Vesicles with Gasâ€Moldable Membrane Architectures. Angewandte Chemie - International Edition, 2020, 59, 15104-15108.	7.2	10
88	A Programmed DNA Marker Based on Bis(4-ethynyl-1,8-naphthalimide) and Three-Methane-Bridged Thiazole Orange. Chemistry - A European Journal, 2015, 21, 16623-16630.	1.7	9
89	Thermo-and pH dual-responsive mesoporous silica nanoparticles for controlled drug release. Journal of Controlled Release, 2015, 213, e69-e70.	4.8	7
90	Morpholino-functionalized phosphorus dendrimers for precision regenerative medicine: osteogenic differentiation of mesenchymal stem cells. Nanoscale, 2019, 11, 17230-17234.	2.8	5

#	Article	IF	CITATIONS
91	<scp>POSS</scp> â€based fluorinated azobenzeneâ€containing polymers: Photoâ€responsive behavior and evaluation of water repellency. Journal of Applied Polymer Science, 2016, 133, .	1.3	4
92	A drug delivery system based on novel hollow mesoporous silica nanospheres. Journal of Controlled Release, 2015, 213, e108-e109.	4.8	3
93	pH and reduction sensitive mesoporous silica nanoparticles for targeted drug delivery. Journal of Controlled Release, 2017, 259, e79-e80.	4.8	3
94	Studying flocculation mechanism of chitosan with pyreneâ€fluorescence probe method. Chinese Journal of Chemistry, 2003, 21, 1224-1228.	2.6	2
95	CO ₂ â€Folded Singleâ€Chain Nanoparticles as Recyclable, Improved Carboxylase Mimics. Angewandte Chemie, 2020, 132, 18576-18580.	1.6	2
96	Photoswitchable Supramolecular Systems. , 0, , 109-166.		1
97	Rethinking of Non-traditional Water Resources in Residential Developments of Rural Towns, Western Australia. Journal of Water and Environment Technology, 2009, 7, 57-66.	0.3	Ο
98	Gas onstructed Vesicles with Gasâ€Moldable Membrane Architectures. Angewandte Chemie, 2020, 132, 15216-15220.	1.6	0