List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3083396/publications.pdf Version: 2024-02-01

Μετκλ Ειιιριά.

#	Article	IF	CITATIONS
1	HepG2 spheroids as a biosensor-like cell-based system for (geno)toxicity assessment. Chemosphere, 2022, 291, 132805.	8.2	8
2	Effects of tyrosine kinase inhibitors on androgen, estrogen α, glucocorticoid and thyroid receptors. Toxicology and Applied Pharmacology, 2022, 434, 115818.	2.8	2
3	Lethal and Sub-Lethal Effects and Modulation of Gene Expression Induced by T Kinase Inhibitors in Zebrafish (Danio Rerio) Embryos. Toxics, 2022, 10, 4.	3.7	4
4	Hepatocellular carcinoma (HepG2/C3A) cell-based 3D model for genotoxicity testing of chemicals. Science of the Total Environment, 2021, 755, 143255.	8.0	31
5	Unravelling the pathways of air plasma induced aflatoxin B1 degradation and detoxification. Journal of Hazardous Materials, 2021, 403, 123593.	12.4	38
6	Deregulation of whole-transcriptome gene expression in zebrafish (Danio rerio) after chronic exposure to low doses of imatinib mesylate in a complete life cycle study. Chemosphere, 2021, 263, 128097.	8.2	9
7	The effects of bisphenol A, F and their mixture on algal and cyanobacterial growth: from additivity to antagonism. Environmental Science and Pollution Research, 2021, 28, 3445-3454.	5.3	16
8	Chemoprotective Effects of Xanthohumol against the Carcinogenic Mycotoxin Aflatoxin B1. Foods, 2021, 10, 1331.	4.3	17
9	Evaluation of potential toxicity of Steriplant ^{\hat{A}©} N aerosolization toward human alveolar cells A459 in vitro. Toxicology and Industrial Health, 2021, 37, 520-527.	1.4	0
10	Safe-by-design gelatin-modified zinc oxide nanoparticles. Journal of Nanoparticle Research, 2021, 23, 1.	1.9	0
11	Genotoxic activity of endocrine disrupting compounds commonly present in paper mill effluents. Science of the Total Environment, 2021, 794, 148489.	8.0	15
12	The cyanobacterial oligopeptides microginins induce DNA damage in the human hepatocellular carcinoma (HepG2) cell line. Chemosphere, 2020, 240, 124880.	8.2	13
13	Characterization of In Vitro 3D Cell Model Developed from Human Hepatocellular Carcinoma (HepG2) Cell Line. Cells, 2020, 9, 2557.	4.1	20
14	Genotoxic Effects of Cylindrospermopsin, Microcystin-LR and Their Binary Mixture in Human Hepatocellular Carcinoma (HepG2) Cell Line. Toxins, 2020, 12, 778.	3.4	14
15	Application of advanced HepG2 3D cell model for studying genotoxic activity of cyanobacterial toxin cylindrospermopsin. Environmental Pollution, 2020, 265, 114965.	7.5	21
16	Substituted 4,5′-Bithiazoles as Catalytic Inhibitors of Human DNA Topoisomerase IIα. Journal of Chemical Information and Modeling, 2020, 60, 3662-3678.	5.4	19
17	Plastics in Cyanobacterial Blooms—Genotoxic Effects of Binary Mixtures of Cylindrospermopsin and Bisphenols in HepG2 Cells. Toxins, 2020, 12, 219.	3.4	13
18	Design and synthesis of 3,5-substituted 1,2,4-oxadiazoles as catalytic inhibitors of human DNA topoisomerase IIα. Bioorganic Chemistry, 2020, 99, 103828.	4.1	11

#	Article	IF	CITATIONS
19	Genotoxicity of the Residues of Anticancer Drugs: A Hazard for Aquatic Environment. , 2020, , 403-420.		1

Environmental risk assessment of widely used anticancer drugs (5-fluorouracil, cisplatin, etoposide,) Tj ETQq000 rgBT /Overlock 10 Tf 5

21	Development of in vitro 3D cell model from hepatocellular carcinoma (HepG2) cell line and its application for genotoxicity testing. Archives of Toxicology, 2019, 93, 3321-3333.	4.2	39
22	The application of the Comet assay in fish cell lines. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2019, 842, 72-84.	1.7	14
23	Genotoxic activity of bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular carcinoma (HepG2) cells. Science of the Total Environment, 2019, 687, 267-276.	8.0	109
24	Structure-guided optimization of 4,6-substituted-1,3,5-triazin-2(1H)-ones as catalytic inhibitors of human DNA topoisomerase IIα. European Journal of Medicinal Chemistry, 2019, 175, 330-348.	5.5	20
25	Genotoxic effects of the cyanobacterial pentapeptide nodularin in HepG2 cells. Food and Chemical Toxicology, 2019, 124, 349-358.	3.6	9
26	Poly (ε-caprolactone) microspheres for prolonged release of selenium nanoparticles. Materials Science and Engineering C, 2019, 96, 776-789.	7.3	22
27	Genotoxic effects of neurotoxin ß-N-methylamino-l-alanine in human peripheral blood cells. Chemosphere, 2019, 214, 623-632.	8.2	10
28	Use of HuH6 and other human-derived hepatoma lines for the detection of genotoxins: a new hope for laboratory animals?. Archives of Toxicology, 2018, 92, 921-934.	4.2	31
29	Adipose tissue stem cell-derived hepatic progenies as an in vitro model for genotoxicity testing. Archives of Toxicology, 2018, 92, 1893-1903.	4.2	4
30	Ecotoxicity of disinfectant benzalkonium chloride and its mixture with antineoplastic drug 5-fluorouracil towards alga <i>Pseudokirchneriella subcapitata</i> . PeerJ, 2018, 6, e4986.	2.0	20
31	Cytotoxicity and genotoxicity of anticancer drug residues and their mixtures in experimental model with zebrafish liver cells. Science of the Total Environment, 2017, 601-602, 293-300.	8.0	70
32	Assessment of the genotoxicity of the tyrosine kinase inhibitor imatinib mesylate in cultured fish and human cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2017, 814, 14-21.	1.7	20
33	Genotoxic potential of the binary mixture of cyanotoxins microcystin-LR and cylindrospermopsin. Chemosphere, 2017, 189, 319-329.	8.2	32
34	Raw and biologically treated paper mill wastewater effluents and the recipient surface waters: Cytotoxic and genotoxic activity and the presence of endocrine disrupting compounds. Science of the Total Environment, 2017, 574, 78-89.	8.0	39
35	Cytotoxic and genotoxic potential of Cr(VI), Cr(III)-nitrate and Cr(III)-EDTA complex in human hepatoma (HepG2) cells. Chemosphere, 2016, 154, 124-131.	8.2	50
36	Results of micronucleus assays with individuals who are occupationally and environmentally exposed to mercury, lead and cadmium. Mutation Research - Reviews in Mutation Research, 2016, 770, 119-139.	5.5	61

#	Article	IF	CITATIONS
37	Diversity of TiO2 nanopowders' characteristics relevant to toxicity testing. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	6
38	Chemical and toxicological characterisation of anticancer drugs in hospital and municipal wastewaters from Slovenia and Spain. Environmental Pollution, 2016, 219, 275-287.	7.5	125
39	Fate and effects of the residues of anticancer drugs in the environment. Environmental Science and Pollution Research, 2016, 23, 14687-14691.	5.3	47
40	Toxicity of the mixture of selected antineoplastic drugs against aquatic primary producers. Environmental Science and Pollution Research, 2016, 23, 14780-14790.	5.3	40
41	Genotoxic potential of montmorillonite clay mineral and alteration in the expression of genes involved in toxicity mechanisms in the human hepatoma cell line HepG2. Journal of Hazardous Materials, 2016, 304, 425-433.	12.4	23
42	Ecotoxicity and genotoxicity of cyclophosphamide, ifosfamide, their metabolites/transformation products and their mixtures. Environmental Pollution, 2016, 210, 192-201.	7.5	56
43	Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon, 2016, 110, 56-67.	1.6	59
44	Analyses of combined effects of cytostatic drugs on micronucleus formation in the Tradescantia. Environmental Science and Pollution Research, 2016, 23, 14762-14770.	5.3	13
45	Influence of selected anti-cancer drugs on the induction of DNA double-strand breaks and changes in gene expression in human hepatoma HepG2 cells. Environmental Science and Pollution Research, 2016, 23, 14751-14761.	5.3	21
46	Genotoxic potential of selected cytostatic drugs in human and zebrafish cells. Environmental Science and Pollution Research, 2016, 23, 14739-14750.	5.3	55
47	Assessment of toxicity and genotoxicity of low doses of 5-fluorouracil in zebrafish (Danio rerio) two-generation study. Water Research, 2015, 77, 201-212.	11.3	81
48	Discovery of Mono―and Disubstituted 1 <i>H</i> â€Pyrazolo[3,4]pyrimidines and 9 <i>H</i> â€Purines as Catalytic Inhibitors of Human DNA Topoisomerase IIα. ChemMedChem, 2015, 10, 345-359.	3.2	30
49	Monocyclic 4-amino-6-(phenylamino)-1,3,5-triazines as inhibitors of human DNA topoisomerase IIα. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5762-5768.	2.2	21
50	Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity. Acta Biomaterialia, 2014, 10, 151-162.	8.3	77
51	Assessment of genotoxicity and acute toxic effect of the imatinib mesylate in plant bioassays. Chemosphere, 2014, 115, 54-58.	8.2	27
52	Synthesis of poly(É›-caprolactone) nanospheres in the presence of the protective agent poly(glutamic) Tj ETQc Colloids and Surfaces B: Biointerfaces, 2014, 117, 414-424.	0 0 0 rgBT 5.0	/Overlock 10 11
53	Toxicities of four anti-neoplastic drugs and their binary mixtures tested on the green alga Pseudokirchneriella subcapitata and the cyanobacterium Synechococcus leopoliensis. Water Research, 2014, 52, 168-177.	11.3	123
54	Acute toxic and genotoxic activities of widely used cytostatic drugs in higher plants: Possible impact	7.5	48

Acute toxic and genotoxic activities of widely used cytostatic drugs in higher plants: Possible impact on the environment. Environmental Research, 2014, 135, 196-203. 54

#	Article	IF	CITATIONS
55	A cell-based biosensor system HepG2CDKN1A–DsRed for rapid and simple detection of genotoxic agents. Biosensors and Bioelectronics, 2014, 61, 102-111.	10.1	14
56	Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food and Chemical Toxicology, 2013, 59, 386-394.	3.6	44
57	Determination of estrogenic potential in waste water without sample extraction. Journal of Hazardous Materials, 2013, 260, 527-533.	12.4	20
58	Cylindrospermopsin induced transcriptional responses in human hepatoma HepG2 cells. Toxicology in Vitro, 2013, 27, 1809-1819.	2.4	29
59	A method for the assessment of DNA damage in individual, one day old, zebrafish embryo (Danio rerio), without prior cell isolation. Toxicology in Vitro, 2013, 27, 2156-2159.	2.4	6
60	The influence of cylindrospermopsin on oxidative DNA damage and apoptosis induction in HepG2 cells. Chemosphere, 2013, 92, 24-30.	8.2	35
61	Antigenotoxic Effect of Tartary (<i>Fagopyrum tataricum</i>) and Common (<i>Fagopyrum) Tj ETQq1 1 0.78431</i>	.4 ₁ gBT /O	verlock 10 Tf
62	Mutagenicity and DNA Damage of Bisphenol a and its Structural Analogues in Hepg2 Cells. Arhiv Za Higijenu Rada I Toksikologiju, 2013, 64, 189-200.	0.7	93
63	APS8, a Polymeric Alkylpyridinium Salt Blocks α7 nAChR and Induces Apoptosis in Non-Small Cell Lung Carcinoma. Marine Drugs, 2013, 11, 2574-2594.	4.6	25
64	Double Strand Breaks and Cell-Cycle Arrest Induced by the Cyanobacterial Toxin Cylindrospermopsin in HepG2 Cells. Marine Drugs, 2013, 11, 3077-3090.	4.6	42
65	Poly(lactide-co-glycolide)/silver nanoparticles: Synthesis, characterization, antimicrobial activity, cytotoxicity assessment and ROS-inducing potential. Polymer, 2012, 53, 2818-2828.	3.8	63
66	Protective effects of xanthohumol against the genotoxicity of heterocyclic aromatic amines MelQx and PhIP in bacteria and in human hepatoma (HepG2) cells. Food and Chemical Toxicology, 2012, 50, 949-955.	3.6	23
67	Mechanisms of cadmium induced genomic instability. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 733, 69-77.	1.0	183
68	Titanium dioxide in our everyday life; is it safe?. Radiology and Oncology, 2011, 45, 227-47.	1.7	386
69	Antioxidant and antigenotoxic effects of rosemary (Rosmarinus officinalis L.) extracts in Salmonella typhimurium TA98 and HepG2 cells. Environmental Toxicology and Pharmacology, 2011, 32, 296-305.	4.0	48
70	Effect of poly-α, γ, L-glutamic acid as a capping agent on morphology and oxidative stress-dependent toxicity of silver nanoparticles. International Journal of Nanomedicine, 2011, 6, 2837.	6.7	34
71	Genotoxicity and potential carcinogenicity of cyanobacterial toxins – a review. Mutation Research - Reviews in Mutation Research, 2011, 727, 16-41.	5.5	259
72	Pre-irradiation of anatase TiO2 particles with UV enhances their cytotoxic and genotoxic potential in human hepatoma HepG2 cells. Journal of Hazardous Materials, 2011, 196, 145-152.	12.4	38

#	Article	IF	CITATIONS
73	Integration of GC-MSD and ER-Calux® assay into a single protocol for determining steroid estrogens in environmental samples. Science of the Total Environment, 2011, 409, 5069-5075.	8.0	16
74	Influence of TiO ₂ nanoparticles on cellular antioxidant defense and its involvement in genotoxicity in HepG2 cells. Journal of Physics: Conference Series, 2011, 304, 012037.	0.4	7
75	Genotoxic effects of the cyanobacterial hepatotoxin cylindrospermopsin in the HepG2 cell line. Archives of Toxicology, 2011, 85, 1617-1626.	4.2	78
76	DNA damage and alterations in expression of DNA damage responsive genes induced by TiO ₂ nanoparticles in human hepatoma HepG2 cells. Nanotoxicology, 2011, 5, 341-353.	3.0	192
77	Development of human cell biosensor system for genotoxicity detection based on DNA damage-induced gene expression. Radiology and Oncology, 2010, 44, 42-51.	1.7	25
78	Xanthohumol, a prenylated flavonoid contained in beer, prevents the induction of preneoplastic lesions and DNA damage in liver and colon induced by the heterocyclic aromatic amine amino-3-methyl-imidazo[4,5-f]quinoline (IQ). Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis 2010 691 17-22	1.0	52
79	An innovative, quick and convenient labeling method for the investigation of pharmacological behavior and the metabolism of poly(DL-lactide-co-glycolide) nanospheres. Nanotechnology, 2009, 20, 335102.	2.6	28
80	Organophosphorus pesticides enhance the genotoxicity of benzo(a)pyrene by modulating its metabolism. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2009, 671, 84-92.	1.0	21
81	Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere, 2009, 75, 1453-1460.	8.2	147
82	Effects of model organophosphorous pesticides on DNA damage and proliferation of HepG2 cells. Environmental and Molecular Mutagenesis, 2008, 49, 360-367.	2.2	67
83	Antimutagenicity of hops (Humulus lupulus L.): bioassay-directed fractionation and isolation of xanthohumol. Phytomedicine, 2008, 15, 216-220.	5.3	19
84	Different sensitivities of human colon adenocarcinoma (CaCo-2), astrocytoma (IPDDC-A2) and lymphoblastoid (NCNC) cell lines to microcystin-LR induced reactive oxygen species and DNA damage. Toxicon, 2008, 52, 518-525.	1.6	65
85	Antigenotoxic effect of Xanthohumol in rat liver slices. Toxicology in Vitro, 2008, 22, 318-327.	2.4	49
86	Patterns of microcystin-LR induced alteration of the expression of genes involved in response to DNA damage and apoptosis. Toxicon, 2008, 51, 615-623.	1.6	93
87	Detection of xenobiotic-induced DNA damage by the comet assay applied to human and rat precision-cut liver slices. Toxicology in Vitro, 2007, 21, 1134-1142.	2.4	24
88	Protective effects of xanthohumol against the genotoxicity of benzo(a)pyrene (BaP), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) and tert-butyl hydroperoxide (t-BOOH) in HepG2 human hepatoma cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2007, 632, 1-8.	1.7	65
89	Determination of xanthohumol in hops (Humulus lupulus L.) by nonaqueous CE. Electrophoresis, 2007, 28, 965-969.	2.4	14
90	Metal binding of metallothioneins in human astrocytomas (U87 MG, IPDDC-2A). BioMetals, 2007, 20, 781-792.	4.1	5

#	Article	IF	CITATIONS
91	Role of the vitamin E model compound Trolox in the prevention of Cr(VI)-induced cellular damage. Toxicological and Environmental Chemistry, 2006, 88, 141-157.	1.2	5
92	Molecular mechanisms of cadmium induced mutagenicity. Human and Experimental Toxicology, 2006, 25, 67-77.	2.2	123
93	Alteration of intracellular GSH levels and its role in microcystin-LR-induced DNA damage in human hepatoma HepG2 cells. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2006, 611, 25-33.	1.7	83
94	In silico fragment-based discovery of indolin-2-one analogues as potent DNA gyrase inhibitors. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5207-5210.	2.2	74
95	Mutagenicity of cadmium in mammalian cells: implication of oxidative DNA damage. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2004, 546, 81-91.	1.0	111
96	Modulation of cytokine production by some phthalimido-desmuramyl dipeptides and their cytotoxicity. Il Farmaco, 2004, 59, 345-352.	0.9	6
97	The role of reactive oxygen species in microcystin-LR-induced DNA damage. Toxicology, 2004, 200, 59-68.	4.2	146
98	Cadmium inhibits repair of UV-, methyl methanesulfonate- and N-methyl-N-nitrosourea-induced DNA damage in Chinese hamster ovary cells. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 529, 109-116.	1.0	70
99	Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon, 2003, 41, 41-48.	1.6	197

100 Organophosphorous Pesticides - Mechanisms of Their Toxicity. , 0, , .