
David S Simmons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3083230/publications.pdf Version: 2024-02-01

DAVID S SIMMONS

#	Article	IF	CITATIONS
1	Generalized localization model of relaxation in glass-forming liquids. Soft Matter, 2012, 8, 11455.	1.2	106
2	Interfacial Dynamic Length Scales in the Glass Transition of a Model Freestanding Polymer Film and Their Connection to Cooperative Motion. Macromolecules, 2013, 46, 9818-9825.	2.2	105
3	Combined Dependence of Nanoconfined <i>T</i> _g on Interfacial Energy and Softness of Confinement. ACS Macro Letters, 2014, 3, 758-762.	2.3	105
4	An Emerging Unified View of Dynamic Interphases in Polymers. Macromolecular Chemistry and Physics, 2016, 217, 137-148.	1.1	87
5	Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn. ACS Combinatorial Science, 2017, 19, 96-107.	3.8	86
6	Progress towards a phenomenological picture and theoretical understanding of glassy dynamics and vitrification near interfaces and under nanoconfinement. Journal of Chemical Physics, 2019, 151, 240901.	1.2	84
7	Mobility gradients yield rubbery surfaces on top of polymer glasses. Nature, 2021, 596, 372-376.	13.7	60
8	Nature and interrelations of fast dynamic properties in a coarse-grained glass-forming polymer melt. Soft Matter, 2011, 7, 11010.	1.2	59
9	Nanoconfinement effects on the fragility of glass formation of a model freestanding polymer film. Soft Matter, 2014, 10, 3166.	1.2	56
10	Designing Sequence-Specific Copolymer Compatibilizers Using a Molecular-Dynamics-Simulation-Based Genetic Algorithm. Macromolecules, 2017, 50, 1155-1166.	2.2	54
11	Understanding the Decreased Segmental Dynamics of Supported Thin Polymer Films Reported by Incoherent Neutron Scattering. Macromolecules, 2015, 48, 801-808.	2.2	53
12	The Glass Transition of a Single Macromolecule. Macromolecules, 2016, 49, 7597-7604.	2.2	49
13	Design Rules for Highly Conductive Polymeric Ionic Liquids from Molecular Dynamics Simulations. Macromolecules, 2018, 51, 6630-6644.	2.2	47
14	The relationship between dynamic and pseudo-thermodynamic measures of the glass transition temperature in nanostructured materials. Journal of Chemical Physics, 2017, 146, 203316.	1.2	43
15	Universal localization transition accompanying glass formation: insights from efficient molecular dynamics simulations of diverse supercooled liquids. Soft Matter, 2019, 15, 1223-1242.	1.2	43
16	Glass Formation near Covalently Grafted Interfaces: Ionomers as a Model Case. Macromolecules, 2015, 48, 2313-2323.	2.2	42
17	Tuning Polymer Glass Formation Behavior and Mechanical Properties with Oligomeric Diluents of Varying Stiffness. ACS Macro Letters, 2015, 4, 1134-1138.	2.3	41
18	Antifreeze Hydrogels from Amphiphilic Statistical Copolymers. Chemistry of Materials, 2019, 31, 135-145.	3.2	39

DAVID S SIMMONS

#	Article	IF	CITATIONS
19	Temperature-Independent Rescaling of the Local Activation Barrier Drives Free Surface Nanoconfinement Effects on Segmental-Scale Translational Dynamics near <i>T</i> _g . ACS Macro Letters, 2018, 7, 1295-1301.	2.3	34
20	Roles of chain stiffness and segmental rattling in ionomer glass formation. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1458-1469.	2.4	32
21	Enhancing heterogenous crystallization resistance in a beadâ€spring polymer model by modifying bond length. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 134-140.	2.4	31
22	Nature of dynamic gradients, glass formation, and collective effects in ultrathin freestanding films. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30
23	Influence of physical and chemical heterogeneity shape on thin film rupture. Journal of Colloid and Interface Science, 2006, 295, 472-481.	5.0	29
24	Three-Layer Model for the Emergence of Ultrastable Glasses from the Surfaces of Supercooled Liquids. Journal of Physical Chemistry B, 2016, 120, 4861-4865.	1.2	24
25	Heterogeneous Rouse Model Predicts Polymer Chain Translational Normal Mode Decoupling. Macromolecules, 2018, 51, 2887-2898.	2.2	23
26	Does fragility of glass formation determine the strength ofTg-nanoconfinement effects?. Journal of Chemical Physics, 2017, 146, 104902.	1.2	22
27	Spatially Distributed Rheological Properties in Confined Polymers by Noncontact Shear. Journal of Physical Chemistry Letters, 2017, 8, 1229-1234.	2.1	21
28	Correspondence between the rigid amorphous fraction and nanoconfinement effects on glass formation. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 907-918.	2.4	21
29	A Model for a Thermally Induced Polymer Coil-to-Clobule Transition. Macromolecules, 2008, 41, 5885-5889.	2.2	16
30	Design rules for glass formation from model molecules designed by a neural-network-biased genetic algorithm. Soft Matter, 2019, 15, 7795-7808.	1.2	16
31	Probing the Metrology and Chemistry Dependences of the Onset Condition of Strong "Nanoconfinement―Effects on Dynamics. Macromolecules, 2020, 53, 4158-4171.	2.2	13
32	HORIZONS FOR DESIGN OF FILLED RUBBER INFORMED BY MOLECULAR DYNAMICS SIMULATION. Rubber Chemistry and Technology, 2017, 90, 238-263.	0.6	12
33	The microscopic origins of stretched exponential relaxation in two model glass-forming liquids as probed by simulations in the isoconfigurational ensemble. Journal of Chemical Physics, 2020, 153, 234503.	1.2	11
34	Scaled Particle Theory for the Coil–Globule Transition of an Isolated Polymer Chain. Macromolecules, 2013, 46, 4691-4697.	2.2	10
35	Poisson ratio mismatch drives low-strain reinforcement in elastomeric nanocomposites. Soft Matter, 2019, 15, 656-670.	1.2	10
36	Do String-like Cooperative Motions Predict Relaxation Times in Glass-Forming Liquids?. Journal of Physical Chemistry B, 2020, 124, 266-276.	1.2	10

DAVID S SIMMONS

#	Article	IF	CITATIONS
37	Pressure Effects on Polymer Coilâ^'Globule Transitions near an LCST. Macromolecules, 2010, 43, 1571-1574.	2.2	8
38	Hierarchical Shape-Specified Model Polymer Nanoparticles via Copolymer Sequence Control. Macromolecules, 2022, 55, 1957-1969.	2.2	8
39	Response to "Comment on â€~Generalized Localization Model of Relaxation in Glass-Forming Liquids'―by A. Ottochian et al Soft Matter, 2013, 9, 7892.	1.2	7
40	Forecasting the experimental glass transition from short time relaxation data. Journal of Non-Crystalline Solids, 2020, 544, 120205.	1.5	6
41	Temperature dependence of aging dynamics in highly non-equilibrium model polymer glasses. Journal of Chemical Physics, 2022, 156, 114504.	1.2	6
42	Dynamical Correlations for Statistical Copolymers from High-Throughput Broad-Band Dielectric Spectroscopy. ACS Combinatorial Science, 2019, 21, 276-299.	3.8	5
43	Near-Substrate Gradients in Chain Relaxation and Viscosity in a Model Low-Molecular Weight Polymer. Macromolecules, 2021, 54, 5935-5949.	2.2	5
44	Sequence Effects on the Glass Transition of a Model Copolymer System. Macromolecules, 2022, 55, 5926-5937.	2.2	3
45	Structure, nanomechanics, and dynamics of dispersed surfactantâ€free clay nanocomposite films. Polymer Engineering and Science, 2018, 58, 1285-1295.	1.5	2