Zhiyuan Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3083110/publications.pdf Version: 2024-02-01

ΖΗΙΥΠΑΝ ΤΙΑΝ

#	Article	IF	CITATIONS
1	Amplified energy transfer in conjugated polymer nanoparticle tags and sensors. Nanoscale, 2010, 2, 1999.	2.8	191
2	Photoswitching-Enabled Novel Optical Imaging: Innovative Solutions for Real-World Challenges in Fluorescence Detections. Accounts of Chemical Research, 2013, 46, 269-279.	7.6	139
3	Photoswitchable Fluorescent Nanoparticles: Preparation, Properties and Applications. ChemPhysChem, 2009, 10, 2577-2591.	1.0	123
4	Single-Chromophore-Based Photoswitchable Nanoparticles Enable Dual-Alternating-Color Fluorescence for Unambiguous Live Cell Imaging. Journal of the American Chemical Society, 2009, 131, 4245-4252.	6.6	122
5	Photoswitchable Nanoparticles Enable High-Resolution Cell Imaging: PULSAR Microscopy. Journal of the American Chemical Society, 2008, 130, 15279-15281.	6.6	105
6	Beyond a Carrier: Graphene Quantum Dots as a Probe for Programmatically Monitoring Anti-Cancer Drug Delivery, Release, and Response. ACS Applied Materials & Interfaces, 2017, 9, 27396-27401.	4.0	96
7	MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nature Communications, 2021, 12, 6399.	5.8	95
8	A BODIPY-Based Fluorescent Probe for Detection of Subnanomolar Phosgene with Rapid Response and High Selectivity. ACS Applied Materials & Interfaces, 2017, 9, 13920-13927.	4.0	91
9	Cancer Cell Membrane-Biomimetic Nanoprobes with Two-Photon Excitation and Near-Infrared Emission for Intravital Tumor Fluorescence Imaging. ACS Nano, 2018, 12, 1350-1358.	7.3	88
10	Photoswitchable fluorescent nanoparticles and their emerging applications. Nanoscale, 2015, 7, 19342-19357.	2.8	63
11	Near-infrared light–triggered platelet arsenal for combined photothermal-immunotherapy against cancer. Science Advances, 2021, 7, .	4.7	57
12	Conjugated Polymer-Based Hybrid Nanoparticles with Two-Photon Excitation and Near-Infrared Emission Features for Fluorescence Bioimaging within the Biological Window. ACS Applied Materials & Interfaces, 2015, 7, 20640-20648.	4.0	52
13	Super-resolution fluorescence nanoscopy applied to imaging core–shell photoswitching nanoparticles and their self-assemblies. Chemical Communications, 2011, 47, 1258-1260.	2.2	51
14	Twisted perylenedyes enable highly fluorescent and photostable nanoparticles. Chemical Communications, 2009, , 180-182.	2.2	50
15	Photoswitching-Induced Frequency-Locked Donor–Acceptor Fluorescence Double Modulations Identify the Target Analyte in Complex Environments. Journal of the American Chemical Society, 2011, 133, 16092-16100.	6.6	43
16	Single-fluorophore-based fluorescent probes enable dual-channel detection of Ag+ and Hg2+ with high selectivity and sensitivity. Analytica Chimica Acta, 2014, 839, 74-82.	2.6	41
17	Antiphase Dual-Color Correlation in a Reactant–Product Pair Imparts Ultrasensitivity in Reaction-Linked Double-Photoswitching Fluorescence Imaging. Journal of the American Chemical Society, 2015, 137, 4312-4315.	6.6	41
18	Development of Polymeric Nanoprobes with Improved Lifetime Dynamic Range and Stability for Intracellular Oxygen Sensing. Small, 2013, 9, 2639-2648.	5.2	34

Zhiyuan Tian

#	Article	IF	CITATIONS
19	A Turn-On Fluorescent Probe for Detection of Sub-ppm Levels of a Sulfur Mustard Simulant with High Selectivity. Analytical Chemistry, 2018, 90, 5481-5488.	3.2	34
20	A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity. Talanta, 2016, 146, 41-48.	2.9	29
21	Conjugated Polymer Nanoparticles Incorporating Antifade Additives for Improved Brightness and Photostability. Journal of Physical Chemistry B, 2013, 117, 4517-4520.	1.2	28
22	Surface growth of highly oriented covalent organic framework thin film with enhanced photoresponse speed. RSC Advances, 2015, 5, 92573-92576.	1.7	28
23	Al3+-induced far-red fluorescence enhancement of conjugated polymer nanoparticles and its application in live cell imaging. Nanoscale, 2013, 5, 9340.	2.8	22
24	Single-Chromophore-Based Therapeutic Agent Enables Green-Light-Triggered Chemotherapy and Simultaneous Photodynamic Therapy to Cancer Cells. ACS Applied Bio Materials, 2019, 2, 3068-3076.	2.3	19
25	Photoswitching Near-Infrared Fluorescence from Polymer Nanoparticles Catapults Signals over the Region of Noises and Interferences for Enhanced Sensitivity. ACS Applied Materials & Interfaces, 2016, 8, 4399-4406.	4.0	18
26	A new colorimetric, near-infrared fluorescent probe for rapid detection of palladium with high sensitivity and selectivity. Talanta, 2018, 183, 164-171.	2.9	18
27	Conjugated Polymer Nanoparticles with Ag ⁺ ‣ensitive Fluorescence Emission: A New Insight into the Cooperative Recognition Mechanism. Particle and Particle Systems Characterization, 2013, 30, 972-980.	1.2	17
28	Systemic localization of seven major types of carbohydrates on cell membranes by dSTORM imaging. Scientific Reports, 2016, 6, 30247.	1.6	17
29	A Indole-Trizole-Rhodamine Triad as Ratiometric Fluorescent Probe for Nanomolar-Concentration Level Hg2+ Sensing with High Selectivity. Journal of Fluorescence, 2015, 25, 1259-1266.	1.3	16
30	A Colorimetric Fluorescent Probe for SO2 Derivatives-Bisulfite and Sulfite at Nanomolar Level. Journal of Fluorescence, 2017, 27, 1767-1775.	1.3	14
31	Development of Eu-based metal-organic frameworks (MOFs) for luminescence sensing and entrapping of arsenate ion. Journal of Luminescence, 2021, 236, 118102.	1.5	14
32	Tuning Photoswitchable Dualâ€Color Fluorescence from Coreâ€Shell Polymer Nanoparticles. Israel Journal of Chemistry, 2013, 53, 294-302.	1.0	13
33	Mechanistic insights into the distribution of carbohydrate clusters on cell membranes revealed by dSTORM imaging. Nanoscale, 2016, 8, 13611-13619.	2.8	11
34	Controlling micro-phase separation in semi-crystalline/amorphous conjugated block copolymers. Polymer Chemistry, 2014, 5, 4400-4404.	1.9	10
35	Hybrid fluorescent nanoparticles fabricated from pyridine-functionalized polyfluorene-based conjugated polymer as reversible pH probes over a broad range of acidity-alkalinity. Mikrochimica Acta, 2014, 181, 1529-1539.	2.5	10
36	Enhanced dSTORM imaging using fluorophores interacting with cucurbituril. Science China Chemistry, 2016, 59, 848-852.	4.2	9

ZHIYUAN TIAN

#	Article	IF	CITATIONS
37	A long-wavelength turn-on fluorescent probe for intracellular nanomolar level peroxynitrite sensing with second-level response. Talanta, 2020, 219, 121354.	2.9	9
38	Development of fluorescent nanoparticles with aggregation-induced delayed fluorescence features, improved brightness and photostability for living cells imaging. New Journal of Chemistry, 2019, 43, 10735-10743.	1.4	8
39	A theoretical study on the stereoconvergency of the intramolecular radical cation [2+2] cycloadditions of bis(styrenes). RSC Advances, 2012, 2, 9932.	1.7	6
40	Correlative dual-alternating-color photoswitching fluorescence imaging and AFM enable ultrastructural analyses of complex structures with nanoscale resolution. Nanoscale, 2020, 12, 17203-17212.	2.8	4
41	A computational investigation into the substituent effect on the chemo- and stereoselectivity of crossed intermolecular radical anion [2 + 2] cycloadditions of enones. RSC Advances, 2014, 4, 63475-63484.	1.7	2
42	Development of Nile red-functionalized magnetic silica nanoparticles for cobalt ion sensing and entrapping. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	1
43	Reply to the â€ ⁻ Comment on "Magnetic-field-enabled resolution enhancement in super-resolution imaging― by Bergmann et al., Physical Chemistry Chemical Physics, 2017, 19 , DOI: 10.1039/C6CP05108A. Physical Chemistry Chemical Physics, 2017, 19, 4891-4892.	1.3	1
44	Conjugated Polymers: Conjugated Polymer Nanoparticles with Ag+ -Sensitive Fluorescence Emission: A New Insight into the Cooperative Recognition Mechanism (Part. Part. Syst. Charact. 11/2013). Particle and Particle Systems Characterization, 2013, 30, 914-914.	1.2	0