Zhen-Liang Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3083013/publications.pdf

Version: 2024-02-01

71061 88593 6,274 162 41 70 citations h-index g-index papers 162 162 162 4529 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Applied Surface Science, 2009, 255, 4725-4732.	3.1	545
2	Polypiperazine-amide Nanofiltration Membrane Modified by Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs). ACS Applied Materials & Interfaces, 2016, 8, 19135-19144.	4.0	262
3	Nanofoaming of Polyamide Desalination Membranes To Tune Permeability and Selectivity. Environmental Science and Technology Letters, 2018, 5, 123-130.	3.9	260
4	Positively charged capillary nanofiltration membrane with high rejection for Mg2 $+$ and Ca2 $+$ and good separation for Mg2 $+$ and Li $+$. Desalination, 2017, 420, 158-166.	4.0	170
5	Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization. Desalination, 2012, 301, 75-81.	4.0	150
6	Preparation and characterization of PVDF–PFSA blend hollow fiber UF membrane. Journal of Membrane Science, 2007, 288, 123-131.	4.1	149
7	Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance. Journal of Colloid and Interface Science, 2019, 540, 382-388.	5.0	139
8	A facile preparation of novel positively charged MOF/chitosan nanofiltration membranes. Journal of Membrane Science, 2017, 525, 269-276.	4.1	138
9	Chlorine resistant TFN nanofiltration membrane incorporated with octadecylamine-grafted GO and fluorine-containing monomer. Journal of Membrane Science, 2018, 545, 185-195.	4.1	112
10	Superoleophobic Slippery Lubricantâ€Infused Surfaces: Combining Two Extremes in the Same Surface. Advanced Materials, 2018, 30, e1803890.	11.1	106
11	Interfacial Polymerization with Electrosprayed Microdroplets: Toward Controllable and Ultrathin Polyamide Membranes. Environmental Science and Technology Letters, 2018, 5, 117-122.	3.9	105
12	A chlorine-tolerant nanofiltration membrane prepared by the mixed diamine monomers of PIP and BHTTM. Journal of Membrane Science, 2016, 498, 374-384.	4.1	104
13	Super-wetting, photoactive TiO2 coating on amino-silane modified PAN nanofiber membranes for high efficient oil-water emulsion separation application. Journal of Membrane Science, 2019, 580, 40-48.	4.1	94
14	FAS Grafted Electrospun Poly(vinyl alcohol) Nanofiber Membranes with Robust Superhydrophobicity for Membrane Distillation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22652-22659.	4.0	93
15	Novel high-flux positively charged composite membrane incorporating titanium-based MOFs for heavy metal removal. Chemical Engineering Journal, 2020, 398, 125706.	6.6	86
16	Preparation, characterization and permeation property of Al2O3, Al2O3–SiO2 and Al2O3–kaolin hollow fiber membranes. Journal of Membrane Science, 2011, 372, 154-164.	4.1	83
17	Thin-film nanocomposite membranes containing tannic acid-Fe3+ modified MoS2 nanosheets with enhanced nanofiltration performance. Journal of Membrane Science, 2020, 616, 118605.	4.1	82
18	High efficient dye removal with hydrolyzed ethanolamine-Polyacrylonitrile UF membrane: Rejection of anionic dye and selective adsorption of cationic dye. Chemosphere, 2020, 259, 127390.	4.2	82

#	Article	IF	CITATIONS
19	Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system. Journal of Membrane Science, 2013, 437, 169-178.	4.1	77
20	Interfacial polymerization on PES hollow fiber membranes using mixed diamines for nanofiltration removal of salts containing oxyanions and ferric ions. Desalination, 2016, 394, 176-184.	4.0	72
21	A Monodispersed Spherical Zrâ€Based Metal–Organic Framework Catalyst, Pt/Au@Pd@UIOâ€66, Comprising an Au@Pd Core–Shell Encapsulated in a UIOâ€66 Center and Its Highly Selective CO ₂ Hydrogenation to Produce CO. Small, 2018, 14, 1702812.	5.2	70
22	Effect of polyethylene glycol molecular weights and concentrations on polyethersulfone hollow fiber ultrafiltration membranes. Journal of Applied Polymer Science, 2004, 91, 3398-3407.	1.3	67
23	Carbon nanotubes enhance permeability of ultrathin polyamide rejection layers. Journal of Membrane Science, 2019, 570-571, 139-145.	4.1	61
24	High-performance polyamide/ceramic hollow fiber TFC membranes with TiO2 interlayer for pervaporation dehydration of isopropanol solution. Journal of Membrane Science, 2019, 576, 26-35.	4.1	60
25	Novel high-flux polyamide/TiO2 composite nanofiltration membranes on ceramic hollow fibre substrates. Journal of Membrane Science, 2018, 565, 322-330.	4.1	59
26	Superior nanofiltration membranes with gradient cross-linked selective layer fabricated via controlled hydrolysis. Journal of Membrane Science, 2020, 604, 118067.	4.1	58
27	Monodispersed gold nanoparticles supported on a zirconium-based porous metal–organic framework and their high catalytic ability for the reverse water–gas shift reaction. Chemical Communications, 2017, 53, 7953-7956.	2.2	57
28	Microwave heating assistant preparation of high permselectivity polypiperazine-amide nanofiltration membrane during the interfacial polymerization process with low monomer concentration. Journal of Membrane Science, 2020, 596, 117718.	4.1	55
29	Formation of microporous polymeric membranes via thermally induced phase separation: A review. Frontiers of Chemical Science and Engineering, 2016, 10, 57-75.	2.3	54
30	A novel TFC forward osmosis (FO) membrane supported by polyimide (PI) microporous nanofiber membrane. Applied Surface Science, 2018, 427, 1-9.	3.1	54
31	Bio-inspired GO-Ag/PVDF/F127 membrane with improved anti-fouling for natural organic matter (NOM) resistance. Chemical Engineering Journal, 2017, 313, 450-460.	6.6	48
32	Novel high-flux thin film composite nanofiltration membranes fabricated by the NaClO pre-oxidation of the mixed diamine monomers of PIP and BHTTM in the aqueous phase solution. Journal of Membrane Science, 2016, 502, 106-115.	4.1	47
33	Preparation and characterization of PFSA–PVA–SiO2/PVA/PAN difunctional hollow fiber composite membranes. Journal of Membrane Science, 2010, 360, 315-322.	4.1	46
34	Novel Swelling-Resistant Sodium Alginate Membrane Branching Modified by Glycogen for Highly Aqueous Ethanol Solution Pervaporation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 27243-27253.	4.0	46
35	Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination. Journal of Membrane Science, 2019, 592, 117369.	4.1	45
36	How to understand the effects of heat curing conditions on the morphology and performance of polypiperazine-amide NF membrane. Journal of Membrane Science, 2020, 597, 117640.	4.1	44

3

#	Article	IF	Citations
37	Hydrophilic yolk-shell ZIF-8 modified polyamide thin-film nanocomposite membrane with improved permeability and selectivity. Separation and Purification Technology, 2020, 247, 116990.	3.9	44
38	Novel \hat{I}^2 -CD@ZIF-8 Nanoparticles-Doped Poly(<i>m</i> -phenylene isophthalamide) (PMIA) Thin-Film Nanocomposite (TFN) Membrane for Organic Solvent Nanofiltration (OSN). ACS Omega, 2018, 3, 11770-11787.	1.6	43
39	Three-channel capillary nanofiltration membrane with quaternary ammonium incorporated for efficient heavy metals removal. Separation and Purification Technology, 2020, 248, 117133.	3.9	43
40	Monodisperse Metal–Organic Framework Nanospheres with Encapsulated Core–Shell Nanoparticles Pt/Au@Pd@{Co ₂ (oba) ₄ (3-bpdh) ₂ }4H ₂ O for the Highly Selective Conversion of CO ₂ to CO. ACS Applied Materials & Samp; Interfaces, 2018, 10, 15096-15103.	4.0	42
41	High permselectivity thin-film composite nanofiltration membranes with 3D microstructure fabricated by incorporation of beta cyclodextrin. Separation and Purification Technology, 2019, 227, 115718.	3.9	42
42	Multilayer assembled CS-PSS/ceramic hollow fiber membranes for pervaporation dehydration. Separation and Purification Technology, 2018, 203, 84-92.	3.9	41
43	Nanostructured Graphene Oxide Composite Membranes with Ultrapermeability and Mechanical Robustness. Nano Letters, 2020, 20, 2209-2218.	4.5	41
44	Tailoring the polyester/polyamide backbone stiffness for the fabrication of high performance nanofiltration membrane. Journal of Membrane Science, 2017, 541, 483-491.	4.1	40
45	Novel thinâ€film nanocomposite membrane with waterâ€soluble polyhydroxylated fullerene for the separation of Mg ²⁺ /Li ⁺ aqueous solution. Journal of Applied Polymer Science, 2019, 136, 48029.	1.3	40
46	Coupling heat curing and surface modification for the fabrication of high permselectivity polyamide nanofiltration membranes. Journal of Membrane Science, 2021, 623, 119073.	4.1	40
47	Improving the chlorine-tolerant ability of polypiperazine-amide nanofiltration membrane by adding NH 2 -PEG-NH 2 in the aqueous phase. Journal of Membrane Science, 2017, 538, 9-17.	4.1	39
48	Polyethyleneimine modified carbohydrate doped thin film composite nanofiltration membrane for purification of drinking water. Journal of Membrane Science, 2020, 610, 118220.	4.1	39
49	Surface Modification of Polyacrylonitrile Membrane by Chemical Reaction and Physical Coating: Comparison between Static and Pore-Flowing Procedures. ACS Omega, 2018, 3, 4231-4241.	1.6	38
50	Polyamide Membranes with Net-Like Nanostructures Induced by Different Charged MOFs for Elevated Nanofiltration. ACS Applied Polymer Materials, 2020, 2, 585-593.	2.0	38
51	Thin-film nanocomposite NF membrane with GO on macroporous hollow fiber ceramic substrate for efficient heavy metals removal. Environmental Research, 2021, 197, 111040.	3.7	38
52	Polyamide reverse osmosis membranes containing 1D nanochannels for enhanced water purification. Journal of Membrane Science, 2021, 618, 118681.	4.1	37
53	A Novel Seeding Method of Interfacial Polymerization-Assisted Dip Coating for the Preparation of Zeolite NaA Membranes on Ceramic Hollow Fiber Supports. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25386-25395.	4.0	36
54	Novel designed TFC membrane based on host-guest interaction for organic solvent nanofiltration (OSN). Journal of Membrane Science, 2019, 588, 117227.	4.1	36

#	Article	IF	CITATIONS
55	A novel PES-TiO2 hollow fiber hybrid membrane prepared via sol-gel process assisted reverse thermally induced phase separation (RTIPS) method. Journal of Membrane Science, 2017, 528, 303-315.	4.1	35
56	High-flux, anti-fouling dendrimer grafted PAN membrane: Fabrication, performance and mechanisms. Journal of Membrane Science, 2020, 596, 117743.	4.1	35
57	Fe3O4/PVDF catalytic membrane treatment organic wastewater with simultaneously improved permeability, catalytic property and anti-fouling. Environmental Research, 2020, 187, 109617.	3.7	34
58	Dually charged polyamide nanofiltration membranes fabricated by microwave-assisted grafting for heavy metals removal. Journal of Membrane Science, 2021, 640, 119834.	4.1	34
59	Ag NPs coated PVDF@TiO2 nanofiber membrane prepared by epitaxial growth on TiO2 inter-layer for 4-NP reduction application. Separation and Purification Technology, 2019, 227, 115700.	3.9	33
60	Preparation of carbon nanofiber with multilevel gradient porous structure for supercapacitor and CO2 adsorption. Chemical Engineering Science, 2019, 205, 181-189.	1.9	33
61	Triethanolamine modification produces ultra-permeable nanofiltration membrane with enhanced removal efficiency of heavy metal ions. Journal of Membrane Science, 2022, 644, 120127.	4.1	33
62	A PEI/TMC membrane modified with an ionic liquid with enhanced permeability and antibacterial properties for the removal of heavy metal ions. Journal of Hazardous Materials, 2022, 435, 129010.	6.5	33
63	Characterization of PVDF–PFSA hollow fiber UF blend membrane with low-molecular weight cut-off. Separation and Purification Technology, 2009, 69, 141-148.	3.9	32
64	Smart light responsive polypropylene membrane switching reversibly between hydrophobicity and hydrophilicity for oily water separation. Journal of Membrane Science, 2021, 638, 119704.	4.1	32
65	PSF hollow fiber membrane fabricated from PSF–HBPE–PEG400–DMAc dope solutions via reverse thermally induced phase separation (RTIPS) process. Chemical Engineering Science, 2015, 137, 131-139.	1.9	31
66	Flower-like ternary metal of Ni-Co-Mn hydroxide combined with carbon nanotube for supercapacitor. lonics, 2020, 26, 3609-3619.	1.2	31
67	Surfactants attached thin film composite (TFC) nanofiltration (NF) membrane via intermolecular interaction for heavy metals removal. Journal of Membrane Science, 2022, 642, 119930.	4.1	31
68	Poly(styrene sulfonic acid) sodium modified nanofiltration membranes with improved permeability for the softening of highly concentrated seawater. Desalination, 2014, 336, 179-186.	4.0	30
69	Three-channel capillary NF membrane with PAMAM-MWCNT-embedded inner polyamide skin layer for heavy metals removal. RSC Advances, 2018, 8, 29455-29463.	1.7	30
70	Novel chitosan-piperazine composite nanofiltration membranes for the desalination of brackish water and seawater. Journal of Polymer Research, 2018, 25, 1.	1,2	30
71	Preparation of Laponite hydrogel in different shapes for selective dye adsorption and filtration separation. Applied Clay Science, 2021, 201, 105936.	2.6	30
72	Pore structure analysis of PFSA/SiO2 composite catalysts from nitrogen adsorption isotherms. Science China Chemistry, 2011, 54, 257-262.	4.2	29

#	Article	IF	Citations
73	In-situ synthetic modified metal-organic framework (MZIF-8) as an interlayer of the composite membranes for ethanol dehydration. Journal of Membrane Science, 2020, 601, 117916.	4.1	29
74	Photocatalytic self-cleaning EVAL membrane by incorporating bio-inspired functionalized MIL-101(Fe) for dye/salt separation. Chemical Engineering Journal, 2022, 444, 136507.	6.6	29
75	Tailoring the morphologies of PVDF nanofibers by interfacial diffusion during coaxial electrospinning. Materials and Design, 2016, 109, 264-269.	3.3	27
76	Highly chlorine-tolerant performance of three-channel capillary nanofiltration membrane with inner skin layer. Journal of Membrane Science, 2017, 527, 111-120.	4.1	27
77	Antifouling sulfonated polyamide nanofiltration hollow fiber membrane prepared with mixed diamine monomers of BDSA and PIP. RSC Advances, 2017, 7, 56629-56637.	1.7	27
78	Morphology, Surface Layer Evolution, and Structure–Dye Adsorption Relationship of Porous Fe ₃ O ₄ MNPs Prepared by Solvothermal/Gas Generation Process. ACS Sustainable Chemistry and Engineering, 2017, 5, 2339-2349.	3.2	26
79	Preparation and characterization of PSf hollow fiber membrane from PSf–HBPE–PEG400–NMP dope solution. Journal of Membrane Science, 2014, 454, 184-192.	4.1	25
80	High-flux NaA zeolite pervaporation membranes dynamically synthesized on the alumina hollow fiber inner-surface in a continuous flow system. Journal of Membrane Science, 2019, 570-571, 445-454.	4.1	25
81	Electrokinetic and permeation characterization of hydrolyzed polyacrylonitrile (PAN) hollow fiber ultrafiltration membrane. Science in China Series B: Chemistry, 2009, 52, 683-689.	0.8	24
82	Fabrication, characterization and separation properties of three-channel stainless steel hollow fiber membrane. Journal of Membrane Science, 2016, 515, 144-153.	4.1	24
83	RO membrane fabricated via a facile modified heat-treating strategy for high-flux desalination. Journal of Membrane Science, 2020, 614, 118498.	4.1	24
84	Bifunctional Ag@Ni-MOF for high performance supercapacitor and glucose sensor. Synthetic Metals, 2021, 282, 116931.	2.1	24
85	High-Performance Zwitterionic Nanofiltration Membranes Fabricated via Microwave-Assisted Grafting of Betaine. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35523-35531.	4.0	23
86	Enhancing nanofiltration performance for antibiotics/NaCl separation via water activation before microwave heating. Journal of Membrane Science, 2021, 629, 119285.	4.1	23
87	A self-cleaning TiO ₂ coated mesh with robust underwater superoleophobicity for oil/water separation in a complex environment. RSC Advances, 2016, 6, 65171-65178.	1.7	22
88	Preparation of PAN/PAMAM blend nanofiber mats as efficient adsorbent for dye removal. Fibers and Polymers, 2015, 16, 1917-1924.	1.1	21
89	Preparation of Carbonized MOF/MgCl ₂ Hybrid Products as Dye Adsorbent and Supercapacitor: Morphology Evolution and Mg Salt Effect. Industrial & Dye Engineering Chemistry Research, 2019, 58, 1601-1612.	1.8	21
90	Estimation of phase separation temperatures for polyethersulfone/solvent/non-solvent systems in RTIPS and membrane properties. Journal of Membrane Science, 2018, 556, 329-341.	4.1	20

#	Article	IF	Citations
91	Impact of Cross-Linked Chitosan Sublayer Structure on the Performance of TFC FO PAN Nanofiber Membranes. ACS Omega, 2018, 3, 13009-13019.	1.6	20
92	Ultrapermeable Organic Solvent Nanofiltration Membranes with Precisely Tailored Support Layers Fabricated Using Thin-Film Liftoff. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30796-30804.	4.0	20
93	Excellent anti-fouling performance of PVDF polymeric membrane modified by enhanced CaA gel-layer. Journal of Industrial and Engineering Chemistry, 2018, 58, 179-188.	2.9	19
94	Enhanced pervaporation performance of SA-PFSA/ceramic hybrid membranes for ethanol dehydration. Separation and Purification Technology, 2018, 206, 218-225.	3.9	19
95	Thin-Film Composite Membrane Prepared by Interfacial Polymerization on the Integrated ZIF-L Nanosheets Interface for Pervaporation Dehydration. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39819-39830.	4.0	19
96	Effects of nucleating agents on the morphologies and performances of poly(vinylidene fluoride) microporous membranes via thermally induced phase separation. Journal of Applied Polymer Science, 2013, 128, 836-844.	1.3	18
97	Construction of MoS2 hybrid membranes on ceramic hollow fibers for efficient dehydration of isopropanol solution via pervaporation. Separation and Purification Technology, 2021, 277, 119452.	3.9	18
98	Three-channel stainless steel hollow fiber membrane with inner layer modified by nano-TiO2 coating method for the separation of oil-in-water emulsions. Separation and Purification Technology, 2019, 222, 75-84.	3.9	17
99	Separation of anionic dye mixtures by Al-metal-organic framework filled polyacrylonitrile-ethanolamine membrane and its modified product. Journal of Cleaner Production, 2021, 284, 124778.	4.6	17
100	Novel Insight on the Effect of the Monomer Concentration on the Polypiperazine-Amide Nanofiltration Membrane. Industrial & Engineering Chemistry Research, 2022, 61, 5843-5852.	1.8	17
101	Hybridly charged NF membranes with MOF incorporated for removing low-concentration surfactants. Separation and Purification Technology, 2021, 258, 118069.	3.9	16
102	Characterization, separation performance, and model analysis of STPPâ€chitosan/PAN polyelectrolyte complex membranes. Journal of Applied Polymer Science, 2011, 120, 1017-1026.	1.3	15
103	A PVDF/PVB composite UF membrane improved by F-127-wrapped fullerene for protein waste-water separation. RSC Advances, 2016, 6, 83510-83519.	1.7	15
104	Interforce initiated by magnetic nanoparticles for reducing internal concentration polarization in CTA forward osmosis membrane. Journal of Applied Polymer Science, 2017, 134, .	1.3	15
105	Porous carbonaceous composite derived from Mg(OH)2 pre-filled PAN based membrane for supercapacitor and dye adsorption application. Journal of Solid State Chemistry, 2019, 277, 493-501.	1.4	15
106	Thin-film composite membranes fabricated directly on a large-porous ceramic support using poly (4-styrenesulfonic acid) as a scaffold for ethanol dehydration. Journal of Membrane Science, 2021, 619, 118775.	4.1	15
107	MoS2 @PDA thin-film nanocomposite nanofiltration membrane for simultaneously improved permeability and selectivity. Journal of Environmental Chemical Engineering, 2022, 10, 107697.	3.3	15
108	Thin-Film Composite Nanofiltration Membrane Modified by Fulvic Acid to Enhance Permeability and Antifouling Performance. Industrial & Engineering Chemistry Research, 2022, 61, 8993-9003.	1.8	15

#	Article	IF	CITATIONS
109	Process optimization and modeling of membrane reactor using self-sufficient catalysis and separation of difunctional ceramic composite membrane to produce methyl laurate. Separation and Purification Technology, 2014, 132, 370-377.	3.9	14
110	Modification of polysulfone hollow fiber ultrafiltration membranes using hyperbranched polyesters with different molecular weights. Polymers for Advanced Technologies, 2015, 26, 353-361.	1.6	14
111	Preparation of MFI zeolite membranes on coarse macropore stainless steel hollow fibers for the recovery of bioalcohols. RSC Advances, 2016, 6, 109936-109944.	1.7	14
112	Effect of cellulose triacetate membrane thickness on forwardâ€osmosis performance and application for spent electroless nickel plating baths. Journal of Applied Polymer Science, 2017, 134, 45049.	1.3	14
113	Facile Fabrication and Application of Superhydrophilic Stainless Steel Hollow Fiber Microfiltration Membranes. ACS Sustainable Chemistry and Engineering, 2017, 5, 10283-10289.	3.2	14
114	Fast surface crosslinking ceramic hollow fiber pervaporation composite membrane with outstanding separation performance for isopropanol dehydration. Separation and Purification Technology, 2020, 234, 116116.	3.9	14
115	Carbon quantum dots doped thin-film nanocomposite (TFN) membrane on macroporous ceramic hollow fiber support via one-step interfacial polymerization. Separation and Purification Technology, 2021, 266, 118572.	3.9	14
116	Preparation and characterization of a PFSA–PVDF blend nanofiber membrane and its preliminary application investigation. New Journal of Chemistry, 2017, 41, 7544-7552.	1.4	13
117	Preparation and characterization of PES/CA microporous membranes via reverse thermally induced phase separation process. Polymer Engineering and Science, 2018, 58, 180-191.	1.5	13
118	Double-Crosslinked GO Interlayer Framework as a Pervaporation Hybrid Membrane with High Performance. ACS Omega, 2019, 4, 15043-15050.	1.6	12
119	Au@Pt Nanotubes within CoZn-Based Metal-Organic Framework for Highly Efficient Semi-hydrogenation of Acetylene. IScience, 2020, 23, 101233.	1.9	12
120	Etching of cubic Pd@Pt in UiO-66 to obtain nanocages for enhancing CO2 hydrogenation. Materials Today Energy, 2021, 19, 100585.	2.5	12
121	Polyamide Nanofiltration Membranes with Enhanced Desalination and Antifouling Performance Enabled by Surface Grafting Polyquaternium-7. Industrial & Engineering Chemistry Research, 2021, 60, 14297-14306.	1.8	12
122	Ceramic hollow fiber NF membrane incorporating UiO-66 for the chlorinated hydrocarbons removal. Chemical Engineering Journal, 2022, 435, 134789.	6.6	12
123	Effects of locations of cellulose nanofibers in membrane on the performance of positively charged membranes. Journal of Membrane Science, 2022, 652, 120464.	4.1	12
124	Can the NF membrane directly obtained by the interfacial polymerization of MPD and TMC?. Journal of Membrane Science, 2022, 656, 120618.	4.1	12
125	Fabrication and characterization of PVDF hollow fiber membranes employing in-situ self-assembly modulation concept. Journal of Membrane Science, 2015, 486, 119-131.	4.1	11
126	Morphological controlling of CTA forward osmosis membrane using different solvent-nonsolvent compositions in first coagulation bath. Journal of Polymer Research, 2017, 24, 1.	1.2	11

#	Article	IF	Citations
127	High efficient reduction of 4-nitrophenol and dye by filtration through Ag NPs coated PAN-Si catalytic membrane. Chemosphere, 2021, 263, 127995.	4.2	11
128	Separation of single and mixed anionic dyes in saline solutions using uncharged polyacrylonitrile-tris(hydroxymethyl)aminomethane (PAN-Tris) ultrafiltration membrane: Performance and mechanism. Journal of Cleaner Production, 2022, 336, 130471.	4.6	11
129	2D nanosheets optimized electrospray-assisted interfacial polymerization polyamide membrane with excellent separation performance. Journal of Membrane Science, 2022, 647, 120308.	4.1	11
130	High-Flux Fine Hollow Fiber Nanofiltration Membranes for the Purification of Drinking Water. Industrial & Drinking Chemistry Research, 2021, 60, 1817-1828.	1.8	10
131	Converting CO ₂ Hydrogenation Products from Paraffins to Olefins: Modification of Zeolite Surface Properties by a UIO- <i>n</i> i> Membrane. ACS Catalysis, 2022, 12, 5894-5902.	5.5	10
132	A polyethersulfone–bisphenol sulfuric acid hollow fiber ultrafiltration membrane fabricated by a reverse thermally induced phase separation process. RSC Advances, 2018, 8, 7800-7809.	1.7	9
133	Preparation and antifouling performance of thin inorganic ultrafiltration membrane via assisted sol-gel method with different composition of dual additives. Ceramics International, 2021, 47, 2180-2186.	2.3	9
134	Thin-film liftoff assisted fabrication of amine-based PDMS TFC membrane for enhanced phenol recovery. Journal of Membrane Science, 2021, 624, 119104.	4.1	9
135	Numerical simulation of atomic layer deposition for thin deposit formation in a mesoporous substrate. AICHE Journal, 2021, 67, e17305.	1.8	9
136	SUZ-4 zeolite membrane fabricated by dynamic hydrothermal crystallization for pervaporation separation of MeOH/MMA mixture. Journal of Membrane Science, 2022, 642, 119974.	4.1	9
137	GWF-NH2 enhanced OSN membrane with trifluoromethyl groups in polyamide layer for rapid methanol recycling. Separation and Purification Technology, 2020, 240, 116619.	3.9	8
138	How Does Alkali Etching Work on the Polyamide Membrane to Obtain an <i>m</i> >Phenylenediamine-Based NF Membrane?. Industrial & Engineering Chemistry Research, 2022, 61, 5536-5546.	1.8	8
139	Modification of porous stainless steel hollow fibers by adding TiO2, ZrO2 and SiO2 nano-particles. Journal of Porous Materials, 2016, 23, 773-782.	1.3	7
140	ETAâ€mâ€PAN and its Composite Membrane with High Performance Prepared by In Situ Modification/NIPS Principle. Macromolecular Materials and Engineering, 2019, 304, 1800745.	1.7	7
141	A Facile Way to Prepare Hydrophilic Homogeneous PES Hollow Fiber Membrane via Non-Solvent Assisted Reverse Thermally Induced Phase Separation (RTIPS) Method. Polymers, 2019, 11, 269.	2.0	7
142	Structure and Properties of PSf Hollow Fiber Membranes with Different Molecular Weight Hyperbranched Polyester Using Pentaerythritol as Core. Polymers, 2020, 12, 383.	2.0	7
143	Self-adhesive PMIA membranes with virus-like silica immobilized lipase for efficient biological aging of Chinese liquor. Journal of Membrane Science, 2021, 621, 118990.	4.1	7
144	Effect of polymer and additive on the structure and property of porous stainless steel hollow fiber. Korean Journal of Chemical Engineering, 2014, 31, 1438-1443.	1,2	6

#	Article	IF	Citations
145	Structure and property of PFSA/PES porous catalytic nanofibers. Catalysis Today, 2016, 276, 133-138.	2.2	6
146	Superoleophobicity: Superoleophobic Slippery Lubricantâ€Infused Surfaces: Combining Two Extremes in the Same Surface (Adv. Mater. 45/2018). Advanced Materials, 2018, 30, 1870338.	11.1	6
147	UIO66-membranized SAPO-34 Pt catalyst for enhanced carbon dioxide conversion efficiency. Materials Today Energy, 2021, 21, 100781.	2.5	6
148	Organic solvent nanofiltration (OSN) membrane with polyamantadinamide active layer for reducing separation performance inconformity. Separation and Purification Technology, 2021, 278, 119582.	3.9	6
149	Highly heat-resistant NF membrane modified by quinoxaline diamines for Li+ extraction from the brine. Journal of Industrial and Engineering Chemistry, 2022, 112, 323-334.	2.9	6
150	Preparation of PFSA/PSf hollow fiber composite membranes with recovered PFSA for the pervaporation separation of EtOH/H2O. Science China Chemistry, 2010, 53, 273-280.	4.2	5
151	Epoxide-based PDMS TFC membrane fabricated via the T-FLO technique for the phenol separation. Journal of Membrane Science, 2022, 641, 119937.	4.1	5
152	Study on the Electrospinnability of Polyvinyl Alcohol Solutions by Using Water/N, N-dimethylacetamide or Water/N, N-dimethylformamide as Solvents. Journal of Macromolecular Science - Physics, 2017, 56, 682-696.	0.4	4
153	Effects of organic acids on the performance of cellulose triacetate forward osmosis membrane. Polymer Engineering and Science, 2019, 59, E138.	1.5	4
154	Preparation and characterisation of graphene oxide-enhanced poly (m-phenylene isophthalamide) ultrafiltration membrane with excellent alkali resistance. Polymer Testing, 2021, 95, 107128.	2.3	4
155	Sub $10 {\rm \hat{A}\hat{I}}^1\!\!/\!4$ m macroporous aramid substrates with a hierarchically structured interface for organic solvent nanofiltration. Journal of Membrane Science, 2021, 625, 119123.	4.1	4
156	On the Effect of Modifications to Montmorillonite for the Desulphurization of Synthetic Gasoline. Adsorption Science and Technology, 2011, 29, 197-210.	1.5	3
157	New insights into the interaction between surface-charged membranes and positively-charged draw solutes in the forward osmosis process. Journal of Water Process Engineering, 2020, 37, 101439.	2.6	3
158	Laminar mesoporous structure of modified montmorillonite clays and its formation mechanism. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 321-327.	0.4	2
159	Second interfacial polymerization decorating defects of TFC NF membrane formed by 1D nanochannels for improving separation performance. Journal of Environmental Chemical Engineering, 2022, 10, 106896.	3.3	2
160	Capillary-driven flow combined with electric field and Fenton reaction to remove ionic dyes from water or concentrated NaCl solution: Mechanism and application. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, , 129660.	2.3	2
161	Influence of residence time on performances of PVDF membranes prepared via free radical polymerization. Journal of Applied Polymer Science, 2014, 131, n/a-n/a.	1.3	1
162	Designing of a novel polyvinylidene fluoride/TiO2/UiO-66-NH2 membrane with photocatalytic antifouling properties using modified zirconium-based metal-organic framework. Water Science and Technology, 2021, 84, 2380-2393.	1.2	1