
Luca Sigalotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3082897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The biology of cancer testis antigens: Putative function, regulation and therapeutic potential. Molecular Oncology, 2011, 5, 164-182.	4.6	281
2	Intratumor Heterogeneity of Cancer/Testis Antigens Expression in Human Cutaneous Melanoma Is Methylation-Regulated and Functionally Reverted by 5-Aza-2′-deoxycytidine. Cancer Research, 2004, 64, 9167-9171.	0.9	193
3	Endoglin: An accessory component of the TGFâ€Î²â€binding receptorâ€complex with diagnostic, prognostic, and bioimmunotherapeutic potential in human malignancies. Journal of Cellular Physiology, 2001, 188, 1-7.	4.1	162
4	Epigenetic drugs as pleiotropic agents in cancer treatment: Biomolecular aspects and clinical applications. Journal of Cellular Physiology, 2007, 212, 330-344.	4.1	124
5	Functional Up-regulation of Human Leukocyte Antigen Class I Antigens Expression by 5-aza-2′-deoxycytidine in Cutaneous Melanoma: Immunotherapeutic Implications. Clinical Cancer Research, 2007, 13, 3333-3338.	7.0	120
6	Prolonged Upregulation of the Expression of HLA Class I Antigens and Co stimulatory Molecules on Melanoma Cells Treated with 5-aza-2??-deoxycytidine (5-AZA-CdR). Journal of Immunotherapy, 1999, 22, 16-24.	2.4	119
7	5-aza-2'-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clinical Cancer Research, 2002, 8, 2690-5.	7.0	114
8	Promoter Methylation Controls the Expression of MAGE2, 3 and 4 Genes in Human Cutaneous Melanoma. Journal of Immunotherapy, 2002, 25, 16-26.	2.4	111
9	Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. Journal of Translational Medicine, 2010, 8, 56.	4.4	94
10	Epigenetic drugs as immunomodulators for combination therapies in solid tumors. , 2014, 142, 339-350.		92
11	Molecular Pathways: At the Crossroads of Cancer Epigenetics and Immunotherapy. Clinical Cancer Research, 2015, 21, 4040-4047.	7.0	89
12	Cancer testis antigens expression in mesothelioma: role of DNA methylation and bioimmunotherapeutic implications. British Journal of Cancer, 2002, 86, 979-982.	6.4	83
13	Emerging Role of Endoglin (CD105) as a Marker of Angiogenesis with Clinical Potential in Human Malignancies. Current Cancer Drug Targets, 2003, 3, 427-432.	1.6	83
14	5-Aza-2′-deoxycytidine (decitabine) treatment of hematopoietic malignancies: a multimechanism therapeutic approach?. Blood, 2003, 101, 4644-4646.	1.4	78
15	Epigenetic targets for immune intervention in human malignancies. Oncogene, 2003, 22, 6484-6488.	5.9	68
16	CXCR6, a Newly Defined Biomarker of Tissue-Specific Stem Cell Asymmetric Self-Renewal, Identifies More Aggressive Human Melanoma Cancer Stem Cells. PLoS ONE, 2010, 5, e15183.	2.5	65
17	Analysis of Cancer/Testis Antigens in Sporadic Medullary Thyroid Carcinoma: Expression and Humoral Response to NY-ESO-1. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 748-754.	3.6	61
18	Missense mutations in Desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro. BMC Medical Genetics, 2007, 8, 65.	2.1	61

LUCA SIGALOTTI

#	Article	IF	CITATIONS
19	Immunomodulatory activity of SGI-110, a 5-aza-2′-deoxycytidine-containing demethylating dinucleotide. Cancer Immunology, Immunotherapy, 2013, 62, 605-614.	4.2	61
20	Antitumor activity of epigenetic immunomodulation combined with CTLA-4 blockade in syngeneic mouse models. Oncolmmunology, 2015, 4, e1019978.	4.6	61
21	Guadecitabine Plus Ipilimumab in Unresectable Melanoma: The NIBIT-M4 Clinical Trial. Clinical Cancer Research, 2019, 25, 7351-7362.	7.0	61
22	Cancer testis antigens in human melanoma stem cells: Expression, distribution, and methylation status. Journal of Cellular Physiology, 2008, 215, 287-291.	4.1	56
23	Phenotypic and functional changes of human melanoma xenografts induced by DNA hypomethylation: Immunotherapeutic implications. Journal of Cellular Physiology, 2006, 207, 58-66.	4.1	52
24	Clinical Studies With Anti–CTLA-4 Antibodies in Non-melanoma Indications. Seminars in Oncology, 2010, 37, 460-467.	2.2	52
25	Methylation levels of the "long interspersed nucleotide element-1" repetitive sequences predict survival of melanoma patients. Journal of Translational Medicine, 2011, 9, 78.	4.4	52
26	Whole genome methylation profiles as independent markers of survival in stage IIIC melanoma patients. Journal of Translational Medicine, 2012, 10, 185.	4.4	49
27	Differential levels of soluble endoglin (CD105) in myeloid malignancies. Journal of Cellular Physiology, 2003, 194, 171-175.	4.1	48
28	Epigenetic Modulation of Solid Tumors as a Novel Approach for Cancer Immunotherapy. Seminars in Oncology, 2005, 32, 473-478.	2.2	44
29	Methylation-regulated expression of HLA class I antigens in melanoma. International Journal of Cancer, 2003, 105, 430-431.	5.1	41
30	Prognostic significance of LINE-1 hypomethylation in oropharyngeal squamous cell carcinoma. Clinical Epigenetics, 2017, 9, 58.	4.1	32
31	Overexpression of protectin (CD59) down-modulates the susceptibility of human melanoma cells to homologous complement. Journal of Cellular Physiology, 2000, 185, 317-323.	4.1	26
32	Epimutational profile of hematologic malignancies as attractive target for new epigenetic therapies. Oncotarget, 2016, 7, 57327-57350.	1.8	24
33	Methylation-regulated expression of cancer testis antigens in primary effusion lymphoma: Immunotherapeutic implications. Journal of Cellular Physiology, 2005, 202, 474-477.	4.1	23
34	5-AZA-2′-Deoxycytidine in Cancer Immunotherapy: A Mouse to Man Story. Cancer Research, 2007, 67, 2900-2900.	0.9	21
35	Epigenetic remodelling of gene expression profiles of neoplastic and normal tissues: immunotherapeutic implications. British Journal of Cancer, 2012, 107, 1116-1124.	6.4	20
36	Epigenetically regulated clonal heritability of CTA expression profiles in human melanoma. Journal of Cellular Physiology, 2010, 223, 352-358.	4.1	19

LUCA SIGALOTTI

#	Article	IF	CITATIONS
37	Epigenetics of melanoma: implications for immune-based therapies. Immunotherapy, 2013, 5, 1103-1116.	2.0	18
38	Epigenetic Immunomodulation of Hematopoietic Malignancies. Seminars in Oncology, 2005, 32, 503-510.	2.2	17
39	Expression and regulation of B7â€H3 immunoregulatory receptor, in human mesothelial and mesothelioma cells: Immunotherapeutic implications. Journal of Cellular Physiology, 2011, 226, 2595-2600.	4.1	17
40	Phospholipid scramblase 1 as a critical node at the crossroad between autophagy and apoptosis in mantle cell lymphoma. Oncotarget, 0, 7, 41913-41928.	1.8	17
41	Toll-Like Receptor 1/2 and 5 Ligands Enhance the Expression of Cyclin D1 and D3 and Induce Proliferation in Mantle Cell Lymphoma. PLoS ONE, 2016, 11, e0153823.	2.5	15
42	Loss of Spry1 reduces growth of BRAFV600-mutant cutaneous melanoma and improves response to targeted therapy. Cell Death and Disease, 2020, 11, 392.	6.3	14
43	Stability of BRAF V600E mutation in metastatic melanoma: new insights for therapeutic success?. British Journal of Cancer, 2011, 105, 327-328.	6.4	13
44	Unbalanced expression of HLA-A and -B antigens: A specific feature of cutaneous melanoma and other non-hemopoietic malignancies reverted by IFN-?. International Journal of Cancer, 2001, 91, 500-507.	5.1	10
45	In vitro analysis of the melanoma/endothelium interaction increasing the release of soluble intercellular adhesion molecule 1 by endothelial cells. Cancer Immunology, Immunotherapy, 1999, 48, 132-138.	4.2	8
46	Quantitative Methylation-Specific PCR: A Simple Method for Studying Epigenetic Modifications of Cell-Free DNA. Methods in Molecular Biology, 2019, 1909, 137-162.	0.9	8
47	Recombinant transmembrane CD59 (CD59-TM) confers complement resistance to GPI-anchored protein defective melanoma cells*. Journal of Cellular Physiology, 2002, 190, 200-206.	4.1	7
48	Epigenetic Markers of Prognosis in Melanoma. Methods in Molecular Biology, 2014, 1102, 481-499.	0.9	6
49	Cancer testis antigens and melanoma stem cells: new promises for therapeutic intervention. Cancer Immunology, Immunotherapy, 2010, 59, 487-488.	4.2	5
50	Abstract CT059: Epigenetic tumor remodelling to improve the efficacy of immune checkpoint blockade: the NIBIT-M4 clinical trial. , 2018, , .		3
51	Epigenetically regulated tumor-associated antigens in melanoma. Expert Review of Dermatology, 2009, 4, 145-154.	0.3	1
52	Unbalanced expression of HLAâ€A and â€B antigens: A specific feature of cutaneous melanoma and other nonâ€hemopoietic malignancies reverted by IFNâ€Î³. International Journal of Cancer, 2001, 91, 500-507.	5.1	1
53	OR.19. Can Epigenetics Have a Clinical Impact in the Treatment of Melanoma?. Clinical Immunology, 2006, 119, S11.	3.2	0
54	Abstract 1196: Epigenetic drugs modulate long noncoding RNAs expression in BRAF inhibitor-resistant melanoma. , 2017, , .		0

4

#	Article	IF	CITATIONS
55	Safety and immunobiological activity of guadecitabine sequenced with ipilimumab in metastatic melanoma patients: The phase Ib NIBIT-M4 study Journal of Clinical Oncology, 2019, 37, 2549-2549.	1.6	0