Hong Huo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3082036/publications.pdf

Version: 2024-02-01

759233 526287 40 786 12 27 citations h-index g-index papers 40 40 40 920 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Influence of Shear on Crystallization Behavior of thel²Phase in Isotactic Polypropylene withl²-Nucleating Agent. Macromolecules, 2004, 37, 2478-2483.	4.8	299
2	Realizing Dendrite-Free Lithium Deposition with a Composite Separator. Nano Letters, 2020, 20, 3798-3807.	9.1	66
3	Dendriteâ€Free Lithium Plating Induced by In Situ Transferring Protection Layer from Separator. Advanced Functional Materials, 2020, 30, 1907020.	14.9	43
4	Investigation on the Copolymer Electrolyte of Poly(1,3â€dioxolaneâ€ <i>co</i> â€formaldehyde). Macromolecular Rapid Communications, 2020, 41, e2000047.	3.9	36
5	Temperatureâ€dependent selective crystallization behavior of isotactic polypropylene with a βâ€nucleating agent. Journal of Applied Polymer Science, 2013, 128, 628-635.	2.6	28
6	Lowâ€Cost Regulating Lithium Deposition Behaviors by Transition Metal Oxide Coating on Separator. Advanced Functional Materials, 2021, 31, 2007255.	14.9	28
7	Influence of shear on polypropylene crystallization kinetics. European Physical Journal E, 2004, 15, 167-175.	1.6	24
8	Polymer Electrolyte Membrane with High Ionic Conductivity and Enhanced Interfacial Stability for Lithium Metal Battery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 22710-22720.	8.0	23
9	Effects of lithium perchlorate on poly(ethylene oxide) spherulite morphology and spherulite growth kinetics. Journal of Applied Polymer Science, 2012, 123, 1935-1943.	2.6	17
10	<i>In situ</i> forming asymmetric bi-functional gel polymer electrolyte in lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 27390-27397.	10.3	17
11	Investigation of structures of PEOâ€MgCl ₂ based solid polymer electrolytes. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1162-1174.	2.1	16
12	Miscibility and rheologically determined phase diagram of poly(ethylene oxide)/poly($\hat{l}\mu$ -caprolactone) blends. Polymer Bulletin, 2012, 68, 1405-1423.	3.3	13
13	The combination of fluctuation-assisted crystallization and interface-assisted crystallization in a crystalline/crystalline blend of poly(ethylene oxide) and poly($\hat{l}\mu$ -caprolactone). Colloid and Polymer Science, 2014, 292, 971-983.	2.1	12
14	Growth and carrier-transport performance of a poly(3-hexylthiophene)/1,2,3,4-bis(p-methylbenzylidene) sorbitol hybrid shish-kebab nanostructure. Journal of Materials Chemistry C, 2017, 5, 3983-3992.	5 . 5	12
15	Sonocrystallization of poly(3-hexylthiophene) in a marginal solvent. Soft Matter, 2018, 14, 3590-3600.	2.7	12
16	Oscillation effects on the crystallization behavior of iPP. Polymer, 2005, 46, 11112-11116.	3.8	11
17	Competitive growth of \hat{l}_{\pm} - and \hat{l}^{2} -crystals in isotactic polypropylene with versatile nucleating agents under shear flow. Colloid and Polymer Science, 2013, 291, 1913-1925.	2.1	11
18	$1,2,3,4$ -bis($\langle i \rangle p \langle i \rangle$ -methylbenzylidene sorbitol) accelerates crystallization and improves hole mobility of poly(3-hexylthiophene). Nanotechnology, 2016, 27, 06LT01.	2.6	10

#	Article	IF	Citations
19	Structure difference of sorbitol derivatives influences the crystallization and performance of P3OT/PCBM organic photovoltaic solar cells. Organic Electronics, 2017, 46, 158-165.	2.6	10
20	Crystal phases, structure, and orientation in isotactic polypropylene after isothermal crystallization under oscillatory shear as a function of nucleation agent. Colloid and Polymer Science, 2014, 292, 849-861.	2.1	9
21	How temperatures affect the number of dislocations in polymer single crystals. Chinese Journal of Polymer Science (English Edition), 2017, 35, 78-86.	3.8	9
22	Crystallization behavior of poly(l̂ μ -caprolactone) and poly (l̂ μ -caprolactone)/LiClO4 complexes from the melt. CrystEngComm, 2012, 14, 7972.	2.6	7
23	Relation between morphology and performance parameters of poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester photovoltaic devices. Organic Electronics, 2016, 28, 189-196.	2.6	7
24	Stabilizing cathode structure <i>via</i> the binder material with high resilience for lithium–sulfur batteries. RSC Advances, 2019, 9, 40471-40477.	3.6	7
25	Crystallization behavior of poly($\hat{l}\mu$ -caprolactone) in poly($\hat{l}\mu$ -caprolactone) and poly(vinyl methyl ether) mixtures. Journal of Applied Polymer Science, 2007, 105, 615-622.	2.6	6
26	In situ studies on the temperatureâ€related deformation behavior of isotactic polypropylene spherulites with uniaxial stretching: The effect of crystallization conditions. Polymer Engineering and Science, 2013, 53, 125-133.	3.1	6
27	Effects of lithium perchlorate on the nucleation and crystallization of poly(ethylene oxide) and poly(μ-caprolactone) in the poly(ethylene oxide)–poly(lμ-caprolactone)–lithium perchlorate ternary blend. CrystEngComm, 2014, 16, 1351-1358.	2.6	6
28	Hydrodynamic behaviors of amphiphilic dendritic polymers with different degrees of amidation. Polymer Chemistry, 2016, 7, 3126-3133.	3.9	5
29	Regulation of the performance parameters of poly(3-alkylthiophene)/[6,6]-phenyl C61-butyric acid methyl ester solar cells by 1,2,3,4-bis(p-methylbenzylidene) sorbitol. Organic Electronics, 2017, 42, 163-172.	2.6	5
30	Effects of isomorphic poly(butylene succinate-co-butylene fumarate) on the nucleation of poly(butylene succinate) and the formation of poly(butylene succinate) ring-banded spherulites. CrystEngComm, 2018, 20, 1573-1587.	2.6	5
31	Optimizing nanoscale morphology and improving carrier transport of PCDTBT-PCBM bulk heterojunction by cyclic carboxylate nucleating agents. Organic Electronics, 2019, 65, 222-231.	2.6	5
32	Thickness-dependent orientation structure in poly(ethylene oxide) multi-layer crystals. Chinese Journal of Polymer Science (English Edition), 2014, 32, 1253-1259.	3.8	4
33	Glutamic acid derivatives as gelators for electrolyte of lithium ion batteries. RSC Advances, 2016, 6, 88820-88825.	3.6	3
34	Effects of ultrasonication on the interfacial interactions between poly(3-hexylthiophene) and graphene oxide. Soft Matter, 2018, 14, 8172-8181.	2.7	3
35	Microfluidic shearâ€induced conformational transition and crystallization of P3HT in toluene. Polymer Crystallization, 2020, 3, e10093.	0.8	3
36	A method to easily control the interfacial interactions between poly(3-hexylthiophene) and graphene oxide in an ultrasonicated solution. CrystEngComm, 2020, 22, 5656-5665.	2.6	3

Hong Huo

#	Article	IF	CITATION
37	Poor solvent as a nucleating agent to induce poly ($\hat{l}\mu$ -caprolactone) ultrathin film crystallization on poly (vinylpyrrolidone) substrate. Colloid and Polymer Science, 2016, 294, 767-776.	2.1	2
38	Formation of phenyl-C61-butyric acid methyl ester nanoscale aggregates after supercritical carbon dioxide annealing. Journal of Materials Science, 2017, 52, 2484-2494.	3.7	1
39	Controlling the organization and stretchability of poly(3-butylthiophene) spherulites. Soft Matter, 2021, 17, 8850-8857.	2.7	1
40	Roles of solution concentration and shear rate in the shear-induced crystallization of P3HT. RSC Advances, 2021, 11, 19673-19681.	3.6	1