
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3081320/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nature Communications, 2014, 5, 2997.	5.8	741
2	ldentification of novel mutational drivers reveals oncogene dependencies in multiple myeloma. Blood, 2018, 132, 587-597.	0.6	335
3	A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia, 2019, 33, 159-170.	3.3	313
4	Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nature Communications, 2019, 10, 3835.	5.8	183
5	Drugging the IncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia, 2018, 32, 1948-1957.	3.3	179
6	Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma. Nature Communications, 2021, 12, 868.	5.8	173
7	Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma. New England Journal of Medicine, 2022, 387, 132-147.	13.9	173
8	Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nature Genetics, 2018, 50, 515-523.	9.4	163
9	Genomic patterns of progression in smoldering multiple myeloma. Nature Communications, 2018, 9, 3363.	5.8	163
10	Widespread intronic polyadenylation diversifies immune cell transcriptomes. Nature Communications, 2018, 9, 1716.	5.8	117
11	Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 1364-1375.	1.9	94
12	Evidence for a role of the histone deacetylase SIRT6 in DNA damage response of multiple myeloma cells. Blood, 2016, 127, 1138-1150.	0.6	89
13	The Cyclophilin A–CD147 complex promotes the proliferation and homing of multiple myeloma cells. Nature Medicine, 2015, 21, 572-580.	15.2	79
14	Bortezomib Induces Anti–Multiple Myeloma Immune Response Mediated by cGAS/STING Pathway Activation. Blood Cancer Discovery, 2021, 2, 468-483.	2.6	64
15	Therapeutic Targeting of miR-29b/HDAC4 Epigenetic Loop in Multiple Myeloma. Molecular Cancer Therapeutics, 2016, 15, 1364-1375.	1.9	60
16	Differential and limited expression of mutant alleles in multiple myeloma. Blood, 2014, 124, 3110-3117.	0.6	54
17	Therapeutic vulnerability of multiple myeloma to MIR17PTi, a first-in-class inhibitor of pri-miR-17-92. Blood, 2018, 132, 1050-1063.	0.6	52
18	Significant Biological Role of Sp1 Transactivation in Multiple Myeloma. Clinical Cancer Research, 2011, 17, 6500-6509	3.2	47

2

#	Article	IF	CITATIONS
19	Determining therapeutic susceptibility in multiple myeloma by single-cell mass accumulation. Nature Communications, 2017, 8, 1613.	5.8	45
20	Genome-Wide Somatic Alterations in Multiple Myeloma Reveal a Superior Outcome Group. Journal of Clinical Oncology, 2020, 38, 3107-3118.	0.8	45
21	Patterns of substrate affinity, competition, and degradation kinetics underlie biological activity of thalidomide analogs. Blood, 2019, 134, 160-170.	0.6	41
22	Deciphering the chronology of copy number alterations in Multiple Myeloma. Blood Cancer Journal, 2019, 9, 39.	2.8	38
23	Functional role and therapeutic targeting of p21-activated kinase 4 in multiple myeloma. Blood, 2017, 129, 2233-2245.	0.6	33
24	Deep Response in Multiple Myeloma: A Critical Review. BioMed Research International, 2015, 2015, 1-7.	0.9	32
25	Alternative Splicing Is a Frequent Event and Impacts Clinical Outcome in Myeloma: A Large RNA-Seq Data Analysis of Newly-Diagnosed Myeloma Patients. Blood, 2014, 124, 638-638.	0.6	25
26	Dual PAK4-NAMPT Inhibition Impacts Growth and Survival, and Increases Sensitivity to DNA-Damaging Agents in WaldenstrA¶m Macroglobulinemia. Clinical Cancer Research, 2019, 25, 369-377.	3.2	24
27	Non-overlapping Control of Transcriptome by Promoter- and Super-Enhancer-Associated Dependencies in Multiple Myeloma. Cell Reports, 2018, 25, 3693-3705.e6.	2.9	23
28	Variable BCL2/BCL2L1 ratio in multiple myeloma with t(11;14). Blood, 2018, 132, 2778-2780.	0.6	18
29	MYD88-independent growth and survival effects of Sp1 transactivation in Waldenström macroglobulinemia. Blood, 2014, 123, 2673-2681.	0.6	16
30	TH17 Pathway and Associated Pro-Inflammatory Cytokines Promote Immune Dysfunction in Myeloma Blood, 2007, 110, 3517-3517.	0.6	15
31	Histone Deacetylase Inhibitors Demonstrate Significant Preclinical Activity as Single Agents, and in Combination with Bortezomib in Waldenstrom's Macroglobulinemia Blood, 2009, 114, 4785-4785.	0.6	14
32	CRISPR Interference (CRISPRi) and CRISPR Activation (CRISPRa) to Explore the Oncogenic IncRNA Network. Methods in Molecular Biology, 2021, 2348, 189-204.	0.4	12
33	The effects of MicroRNA deregulation on pre-RNA processing network in multiple myeloma. Leukemia, 2020, 34, 167-179.	3.3	11
34	High-Dose Melphalan Significantly Increases Mutational Burden in Multiple Myeloma Cells at Relapse: Results from a Randomized Study in Multiple Myeloma. Blood, 2020, 136, 4-5.	0.6	11
35	Lack of Response to Vaccination in MGUS and Stable Myeloma Blood, 2009, 114, 1852-1852.	0.6	11
36	Interleukin-17 and TH17 Pathway Supports Waldenstrom's Macroglobulinemia Cell-Growth: Potential Therapeutic Implications. Blood, 2010, 116, 446-446.	0.6	11

#	Article	IF	CITATIONS
37	IgM-MM is predominantly a pre–germinal center disorder and has a distinct genomic and transcriptomic signature from WM. Blood, 2021, 138, 1980-1985.	0.6	11
38	Deficiency of IL-17A, but not the prototypical Th17 transcription factor RORÎ ³ t, decreases murine spontaneous intestinal tumorigenesis. Cancer Immunology, Immunotherapy, 2016, 65, 13-24.	2.0	10
39	Biallelic Loss of BCMA Triggers Resistance to Anti-BCMA CAR T Cell Therapy in Multiple Myeloma. Blood, 2020, 136, 14-14.	0.6	10
40	Tolerance, Kinetics, and Depth of Response for Subcutaneous Versus Intravenous Administration of Bortezomib Combination in Chinese Patients With Newly Diagnosed Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 422-430.	0.2	8
41	YWHAE/14-3-3ε expression impacts the protein load, contributing to proteasome inhibitor sensitivity in multiple myeloma. Blood, 2020, 136, 468-479.	0.6	8
42	Human Monoclonal Antibody Targeting IL-17A (AIN457) Down-Regulates MM Cell-Growth and Survival and Inhibits Osteoclast Development In Vitro and In Vivo: A Potential Novel Therapeutic Application In Myeloma. Blood, 2010, 116, 456-456.	0.6	7
43	Dual BCL-2/BCL-XL Inhibitor Pelcitoclax (APG-1252) Overcomes Intrinsic and Acquired Resistance to Venetoclax in Multiple Myeloma Cells. Blood, 2021, 138, 2655-2655.	0.6	7
44	Detection of minimal residual disease by next generation sequencing in AL amyloidosis. Blood Cancer Journal, 2021, 11, 117.	2.8	6
45	Apoptosis reprogramming triggered by splicing inhibitors sensitizes multiple myeloma cells to Venetoclax treatment. Haematologica, 2022, 107, 1410-1426.	1.7	6
46	Bortezomib Induces Anti-Multiple Myeloma Immune Response Mediated By Cgas/Sting Pathway Activation, Type I Interferon Secretion, and Immunogenic Cell Death: Clinical Application. Blood, 2020, 136, 7-8.	0.6	4
47	Targeting MEK1/2 Signaling Cascade by AS703026, a Novel Selective MEK1/2 Inhibitor, Induces Pleiotropic Anti-Myeloma Activity in Vitro and In Vivo Blood, 2009, 114, 3848-3848.	0.6	4
48	Identification of a Novel Long Intergenic Noncoding RNA - Linc00936, with Significant Impact on Multiple Myeloma Cell Growth Via mTOR Pathway Inhibition. Blood, 2015, 126, 504-504.	0.6	4
49	Biological Insights into Myeloma and Other B Cell Malignancies. BioMed Research International, 2016, 2016, 1-3.	0.9	3
50	Promoting Osteoblastogenesis Using a Novel Dkk-1 Neutralizing Antibody in the Treatment of Multiple Myeloma Related Bone Disease. Blood, 2008, 112, 2739-2739.	0.6	3
51	Aberrant Non-Homologous End Joining in Multiple Myeloma: A Role in Genomic Instability and As Potential Prognostic Marker Blood, 2012, 120, 2932-2932.	0.6	3
52	Whole Genome Paired End Sequencing Identifies Genomic Evolution in Myeloma Blood, 2009, 114, 2846-2846.	0.6	3
53	Activation of the ERK Pathway Drives Acquired Resistance to Venetoclax in MM Cell Models. Blood, 2020, 136, 21-22.	0.6	3
54	The monoclonal antibody nBT062 conjugated to maytansinoids has potent and selective cytotoxicity against CD138 positive multiple myeloma cells in vitro and in vivo. Nature Precedings, 2008, , .	0.1	2

#	Article	IF	CITATIONS
55	Blockade of XBP1 Splicing by Inhibition of IRE1α Is a Promising Therapeutic Option in Multiple Myeloma. Blood, 2011, 118, 133-133.	0.6	2
56	Dysregulation of Splicing in Multiple Myeloma: The Splicing Factor SRSF1 Supports MM Cell Proliferation Via Splicing Control. Blood, 2018, 132, 4500-4500.	0.6	2
57	B Cell Transcriptional Coactivator <i>POU2AF1</i> (BOB-1) Is an Early Transcription Factor Modulating the Protein Synthesis and Ribosomal Biogenesis in Multiple Myeloma: With Therapeutic Implication. Blood, 2021, 138, 2670-2670.	0.6	2
58	Gabarap Loss Mediates Immune Escape in High Risk Multiple Myeloma. Blood, 2021, 138, 891-891.	0.6	2
59	Enhancing the Immune Surveillance in Multiple Myeloma Via CDK4/6 Inhibition. Blood, 2020, 136, 33-34.	0.6	2
60	High Throughput Genomic Analysis Identifies Low-Risk Smoldering Multiple Myeloma. Blood, 2020, 136, 2-2.	0.6	1
61	Potential Therapeutic Role of the Selective Adhesion Molecule (SAM) Inhibitor Natalizumab in Multiple Myeloma Blood, 2009, 114, 1850-1850.	0.6	1
62	Deep Sequencing of Immunoglobulin Loci Reveals Evolution of IgH Clone in Multiple Myeloma Patients over the Course of Treatment. Blood, 2014, 124, 2005-2005.	0.6	1
63	Identification of CS1 Peptides for Induction of Antigen-Specific CTLs in Multiple Myeloma Blood, 2007, 110, 1611-1611.	0.6	1
64	Biological and Therapeutic Potential of Mir-155, 585 and Let-7f in Myeloma in Vitro and In Vivo Blood, 2009, 114, 833-833.	0.6	1
65	Vorinostat Induced Cellular Stress Disrupts the Balance Between p38 MAPK and Erk Pathways Leading to Apoptosis in WM Cells Blood, 2009, 114, 3740-3740.	0.6	1
66	Cytoskeleton Regulator PAK4 Plays a Role in Growth and Survival of Myeloma with a Potential Therapeutic Intervention Using PAK4 Allosteric Modulators (PAMs). Blood, 2014, 124, 3381-3381.	0.6	1
67	Defining Genomic Probability of Progression to Identify Low-Risk Smoldering Multiple Myeloma. Blood, 2021, 138, 545-545.	0.6	1
68	Disruption of the m-SWI/SNF Complex Mediated By Recurrent Non-Coding Mutations in BCL7A Induces Tumor Cell Proliferation in Multiple Myeloma. Blood, 2020, 136, 40-40.	0.6	1
69	Sp1 Transcription Factor as a Novel Therapeutic Target in Multiple Myeloma (MM). Blood, 2008, 112, 3664-3664.	0.6	0
70	TH17 Pathway Promotes Tumor Cell Growth and Suppresses Immune Function in Myeloma: Potential for Therapeutic Application. Blood, 2008, 112, 2737-2737.	0.6	0
71	Gadolinium Containing Contrast Agent Promotes Multiple Myeloma Cell Growth: Implication for Clinical Use of MRI in Myeloma Blood, 2009, 114, 1809-1809.	0.6	0
72	Molecular Sequaele of Activin A-Dependent Osteoblast Inhibition in Myeloma Blood, 2009, 114, 1789-1789.	0.6	0

#	Article	IF	CITATIONS
73	CCL3 Impairs Osteoblast Function Via Downregulation of Osteocalcin Blood, 2009, 114, 739-739.	0.6	Ο
74	Evolution of Genomic Changes and Their Significance in Myeloma Blood, 2009, 114, 605-605.	0.6	0
75	Significant Biological Role of Sp1 Transactivation in Myeloma: Potential Therapeutic Application Blood, 2009, 114, 1841-1841.	0.6	0
76	Bcl6 as a Novel Therapeutic Target in Multiple Myeloma (MM) Blood, 2009, 114, 295-295.	0.6	0
77	Combinational Therapy of Lenalidomide with Activin A Neutralizing Antibody; Preclinical Rationale for a Novel Anti-Myeloma Strategy. Blood, 2012, 120, 1871-1871.	0.6	0
78	Functional and Clinical Relevance of Splicing Factor SRSF1 in Multiple Myeloma (MM). Blood, 2014, 124, 3388-3388.	0.6	0
79	Long Intergenic Non-Coding RNAs (lincRNA) Impacts Biology and Clinical Outcome in Multiple Myeloma. Blood, 2014, 124, 642-642.	0.6	0
80	Differential and Limited Expression of Mutant Alleles in Multiple Myeloma. Blood, 2014, 124, 2007-2007.	0.6	0
81	Elevated APEX1 Disrupts G2/M Checkpoint, Contributing to Evolution and Survival of Myeloma Cells. Blood, 2015, 126, 2997-2997.	0.6	Ο
82	Selective Activation of the Non-Classical Estrogen Receptor Gper Elicits Potent Anti-Tumor Activity in Multiple Myeloma. Blood, 2015, 126, 916-916.	0.6	0
83	PAK4 Inhibition Impacts Growth and Survival, and Increases Sensitivity to DNA-Damaging Agents in Waldestrostom Macroglobulinemia. Blood, 2017, 130, 648-648.	0.6	0
84	Functional Role of Linc-RNAs in Multiple Myeloma: Linc-MIR17HG Affects Fatty Acid Biosynthesis Via transcriptional Regulation of ACC1 with Potential Therapeutic Implications. Blood, 2018, 132, 1925-1925.	0.6	0
85	Transcriptional Deregulation Mediated By ID2-TCF3 Axis Supports MM Cell Growth and Proliferation in the Context of the Bone Marrow Milieu. Blood, 2021, 138, 2686-2686.	0.6	Ο
86	Dysfunctional HDAC8 Impacts Genomic Integrity and Is a Novel Therapeutic Target in Multiple Myeloma. Blood, 2021, 138, 1610-1610.	0.6	0
87	Chromatin Remodeling and Associated Changes in Gene Expression Induced By Bone Marrow Stromal Cells Identify Features of High-Risk Multiple Myeloma. Blood, 2021, 138, 2672-2672.	0.6	0
88	Aberrant CDK7 Activity Drives the Cell Cycle and Transcriptional Dysregulation to Support Multiple Myeloma Growth: An Attractive Molecular Vulnerability. Blood, 2021, 138, 2687-2687.	0.6	0
89	Identifying Long Noncoding RNA Dependencies Using CRISPR Interference (CRISPRi)-Based Platform in Multiple Myeloma. Blood, 2021, 138, 894-894.	0.6	0
90	RNA Regulator of Lipogenesis (RROL) Is a Novel Lncrna Mediating Protein-Protein Interaction at Gene Regulatory Loci Driving Lipogenic Programs in Multiple Myeloma. Blood, 2020, 136, 20-21.	0.6	0

#	Article	IF	CITATIONS
91	Exploring <i>POU2AF1 (</i> BOB-1 <i>) D</i> ependency and Transcription Addiction in Multiple Myeloma. Blood, 2020, 136, 49-49.	0.6	Ο
92	Genomic and Transcriptomic Characterization of IgM Multiple Myeloma Identifies a Pre-Germinal Center Plasma Cell Disorder with Immature B-Cell Transcription-Factor Signature. Blood, 2020, 136, 7-8.	0.6	0
93	Targeting MM at the Nexus between Cell Cycle and Transcriptional Regulation Via CDK7 Inhibition. Blood, 2020, 136, 1-2.	0.6	ο