Jiandu Lei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3080869/publications.pdf

Version: 2024-02-01

	218381	253896
1,975	26	43
citations	h-index	g-index
5.0	F.C.	2027
56	56	2837
docs citations	times ranked	citing authors
	citations 56	1,975 26 citations h-index 56 56

#	Article	IF	CITATIONS
1	Ecofriendly Electrospun Membranes Loaded with Visible-Light-Responding Nanoparticles for Multifunctional Usages: Highly Efficient Air Filtration, Dye Scavenging, and Bactericidal Activity. ACS Applied Materials & Interfaces, 2019, 11, 12880-12889.	4.0	323
2	Flexible and transparent composite nanofibre membrane that was fabricated via a "green― electrospinning method for efficient particulate matter 2.5 capture. Journal of Colloid and Interface Science, 2021, 582, 506-514.	5.0	160
3	The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water. RSC Advances, 2015, 5, 50942-50954.	1.7	116
4	NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Scientific Reports, 2016, 6, 23667.	1.6	105
5	Multifunctional Applications of Blow-Spinning <i>Setaria viridis</i> Structured Fibrous Membranes in Water Purification. ACS Applied Materials & Samp; Interfaces, 2021, 13, 22874-22883.	4.0	93
6	Autonomous Self-Healing Silk Fibroin Injectable Hydrogels Formed via Surfactant-Free Hydrophobic Association. ACS Applied Materials & Samp; Interfaces, 2020, 12, 1628-1639.	4.0	80
7	Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol–dihydroartemisinin conjugate. Scientific Reports, 2016, 6, 29461.	1.6	53
8	Self-assembled targeted folate-conjugated eight-arm-polyethylene glycol–betulinic acid nanoparticles for co-delivery of anticancer drugs. Journal of Materials Chemistry B, 2015, 3, 3754-3766.	2.9	47
9	Novel Multiarm Polyethylene glycol-Dihydroartemisinin Conjugates Enhancing Therapeutic Efficacy in Non-Small-Cell Lung Cancer. Scientific Reports, 2014, 4, 5871.	1.6	46
10	Ginsenoside nanoparticle: a new green drug delivery system. Journal of Materials Chemistry B, 2016, 4, 529-538.	2.9	43
11	A novel self-assembled targeted nanoparticle platform based on carboxymethylcellulose co-delivery of anticancer drugs. Journal of Materials Chemistry B, 2015, 3, 6605-6617.	2.9	41
12	A novel self-assembled nanoparticle platform based on pectin-eight-arm polyethylene glycol-drug conjugates for co-delivery of anticancer drugs. Materials Science and Engineering C, 2018, 86, 28-41.	3.8	37
13	Self-assembled pH-responsive polymeric nanoparticles based on lignin-histidine conjugate with small particle size for efficient delivery of anti-tumor drugs. Biochemical Engineering Journal, 2020, 156, 107526.	1.8	37
14	Water soluble multiarm-polyethylene glycol–betulinic acid prodrugs: design, synthesis, and in vivo effectiveness. Polymer Chemistry, 2014, 5, 5775-5783.	1.9	35
15	Cellulose-graft-poly(<scp>l</scp> -lactic acid) nanoparticles for efficient delivery of anti-cancer drugs. Journal of Materials Chemistry B, 2014, 2, 6749-6757.	2.9	34
16	Dual-Targeted Controlled Delivery Based on Folic Acid Modified Pectin-Based Nanoparticles for Combination Therapy of Liver Cancer. ACS Sustainable Chemistry and Engineering, 2019, 7, 3614-3623.	3.2	33
17	Hydroprocessing of Jatropha Oil for Production of Green Diesel over Non-sulfided Ni-PTA/Al2O3 Catalyst. Scientific Reports, 2015, 5, 11327.	1.6	32
18	A novel green lignosulfonic acid/Nafion composite membrane with reduced cost and enhanced thermal stability. Chemical Communications, 2021, 57, 9288-9291.	2.2	30

#	Article	IF	Citations
19	Extraction of oil from Jatropha curcas seeds by subcritical fluid extraction. Industrial Crops and Products, 2014, 62, 235-241.	2.5	29
20	Self-assembled serum albumin–poly(<scp>l</scp> -lactic acid) nanoparticles: a novel nanoparticle platform for drug delivery in cancer. RSC Advances, 2015, 5, 15612-15620.	1.7	29
21	Surface modification route to prepare novel polyamide@NH ₂ _MIL-88B nanocomposite membranes for water treatment. RSC Advances, 2016, 6, 71250-71261.	1.7	29
22	A Non-sulfided flower-like Ni-PTA Catalyst that Enhances the Hydrotreatment Efficiency of Plant Oil to Produce Green Diesel. Scientific Reports, 2015, 5, 15576.	1.6	28
23	Extraction of Polysaccharide from <i>Dendrobium nobile</i> Lindl. by Subcritical Water Extraction. ACS Omega, 2019, 4, 20586-20594.	1.6	28
24	Subcritical water extraction of betulinic acid from birch bark. Industrial Crops and Products, 2015, 74, 557-565.	2.5	27
25	Self-Assembled Pectin-Conjugated Eight-Arm Polyethylene Glycol–Dihydroartemisinin Nanoparticles for Anticancer Combination Therapy. ACS Sustainable Chemistry and Engineering, 2017, 5, 8097-8107.	3.2	27
26	Development of Novel Lignin-Based Targeted Polymeric Nanoparticle Platform for Efficient Delivery of Anticancer Drugs. ACS Biomaterials Science and Engineering, 2018, 4, 1730-1737.	2.6	27
27	Self-Assembled pH and Redox Dual Responsive Carboxymethylcellulose-Based Polymeric Nanoparticles for Efficient Anticancer Drug Codelivery. ACS Biomaterials Science and Engineering, 2018, 4, 4200-4207.	2.6	27
28	Injectable and thermosensitive supramolecular hydrogels by inclusion complexation between binary-drug loaded micelles and α-cyclodextrin. Materials Science and Engineering C, 2017, 76, 966-974.	3.8	26
29	Self-assembled nanoparticles based on a carboxymethylcellulose–ursolic acid conjugate for anticancer combination therapy. RSC Advances, 2017, 7, 36256-36268.	1.7	26
30	Fabrication of ZIF-9@super-macroporous microsphere for adsorptive removal of Congo red from water. RSC Advances, 2017, 7, 6288-6296.	1.7	23
31	Combining the Photocatalysis and Absorption Properties of Core-Shell Cu-BTC@TiO2 Microspheres: Highly Efficient Desulfurization of Thiophenic Compounds from Fuel. Materials, 2018, 11, 2209.	1.3	22
32	PEGylated-PLGA Nanoparticles Coated with pH-Responsive Tannic Acid–Fe(III) Complexes for Reduced Premature Doxorubicin Release and Enhanced Targeting in Breast Cancer. Molecular Pharmaceutics, 2021, 18, 2161-2173.	2.3	21
33	Self-Assembled pH-Sensitive Nanoparticles Based on Ganoderma lucidum Polysaccharide–Methotrexate Conjugates for the Co-delivery of Anti-tumor Drugs. ACS Biomaterials Science and Engineering, 2021, 7, 3764-3773.	2.6	20
34	"Nano-Ginseng―for Enhanced Cytotoxicity AGAINST Cancer Cells. International Journal of Molecular Sciences, 2018, 19, 627.	1.8	19
35	Development and physicochemical characterization of nanoliposomes with incorporated oleocanthal, oleacein, oleuropein and hydroxytyrosol. Food Chemistry, 2022, 384, 132470.	4.2	19
36	Fabrication of novel ZIFâ€67 Composite Microspheres for Effective Adsorption and Solidâ€phase Extraction of Dyes from Water. ChemistrySelect, 2018, 3, 5833-5842.	0.7	17

#	Article	IF	CITATIONS
37	Design, synthesis and in vivo antitumor efficacy of novel eight-arm-polyethylene glycol–pterostilbene prodrugs. RSC Advances, 2015, 5, 51592-51599.	1.7	15
38	A self-assembled nanoparticle platform based on poly(ethylene glycol)–diosgenin conjugates for co-delivery of anticancer drugs. RSC Advances, 2015, 5, 74828-74834.	1.7	14
39	Self-assembled nanoparticles based on poly(ethylene glycol)–oleanolic acid conjugates for co-delivery of anticancer drugs. RSC Advances, 2017, 7, 29591-29598.	1.7	13
40	Self-Assembled Nanoparticles Platform Based on Pectin-Dihydroartemisinin Conjugates for Codelivery of Anticancer Drugs. ACS Biomaterials Science and Engineering, 2018, 4, 1641-1650.	2.6	13
41	A tunable temperature-responsive and tough platform for controlled drug delivery. New Journal of Chemistry, 2021, 45, 13056-13063.	1.4	13
42	An efficient prodrug-based nanoscale delivery platform constructed by water soluble eight-arm-polyethylene glycol-diosgenin conjugate. Materials Science and Engineering C, 2019, 98, 153-160.	3.8	12
43	Enhanced proton conductivity of Nafion membrane induced by incorporation of MOF-anchored 3D microspheres: a superior and promising membrane for fuel cell applications. Chemical Communications, 2022, 58, 2906-2909.	2.2	12
44	A novel self-assembled pH-sensitive targeted nanoparticle platform based on antibody–4arm-polyethylene glycol–pterostilbene conjugates for co-delivery of anticancer drugs. Journal of Materials Chemistry B, 2018, 6, 656-665.	2.9	11
45	Green ligninâ€based polyester nanofiltration membranes with ethanol and chlorine resistance. Journal of Applied Polymer Science, 2022, 139, 51427.	1.3	11
46	A Self-assembled Nanoparticle Platform Based on Amphiphilic Oleanolic Acid Polyprodrug for Cancer Therapy. Chinese Journal of Polymer Science (English Edition), 2020, 38, 819-829.	2.0	10
47	Self-Assembled Folic Acid-Targeted Pectin-Multi-Arm Polyethylene Glycol Nanoparticles for Tumor Intracellular Chemotherapy. ACS Omega, 2021, 6, 1223-1234.	1.6	10
48	A smart MXene-copolymeric molecularly imprinted hydrogel with dual-response and photothermal conversion performance for specific recognition of cis-diol compounds. Nano Research, 2022, 15, 2764-2772.	5.8	10
49	Self-Assembling pH-Responsive Nanoparticle Platform Based on Pectin–Doxorubicin Conjugates for Codelivery of Anticancer Drugs. ACS Omega, 2021, 6, 9998-10004.	1.6	9
50	Subcritical Water Extraction of Ursolic Acid from Hedyotis diffusa. Applied Sciences (Switzerland), 2017, 7, 187.	1.3	8
51	Synthesis, characterization and adsorption performance of molecularly imprinted nanoparticles for tripterine by precipitation polymerization. Analytical Methods, 2014, 6, 684-689.	1.3	6
52	Fabrication of carbon nanotubes-modified poly(ethyleneimine)/sodium lignosulfonate membranes for improved selectivity performance and antifouling capability in forward osmosis process. Journal of Materials Science, 2021, 56, 15499-15511.	1.7	5
53	Targeted Delivery of Dual Anticancer Drugs Based on Self-Assembled iRGD-Modified Soluble Drug–Polymer Pattern Conjugate Nanoparticles. ACS Applied Bio Materials, 2021, 4, 1499-1507.	2.3	5
54	Cascade Extraction and Separation of the Active Constituents from <i>Jatropha Curcas </i> L. Seeds. Solvent Extraction Research and Development, 2015, 22, 109-117.	0.5	1

#	Article	lF	CITATIONS
55	Hydroprocessing Catalysts: Inexpensive Ni-Based Nonsulfided Catalysts. Catalytic Science Series, 2018, , 77-95.	0.6	O