Roberta A Gottlieb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3080837/publications.pdf

Version: 2024-02-01

196 papers 26,929 citations

75 h-index 161 g-index

209 all docs 209 docs citations

times ranked

209

37392 citing authors

#	Article	IF	CITATIONS
1	Mitochondria and Their Cell Hosts: Best of Frenemies. , 2022, , 167-196.		O
2	Depletion of mitochondrial methionine adenosyltransferase $\hat{l}\pm 1$ triggers mitochondrial dysfunction in alcohol-associated liver disease. Nature Communications, 2022, 13, 557.	12.8	18
3	Attenuation of Adverse Postinfarction Left Ventricular Remodeling with Empagliflozin Enhances Mitochondria-Linked Cellular Energetics and Mitochondrial Biogenesis. International Journal of Molecular Sciences, 2022, 23, 437.	4.1	18
4	Autophagy deficiency abolishes liver mitochondrial DNA segregation. Autophagy, 2022, 18, 2397-2408.	9.1	6
5	Asporin, an extracellular matrix protein, is a beneficial regulator of cardiac remodeling. Matrix Biology, 2022, 110, 40-59.	3.6	16
6	PACT establishes a posttranscriptional brake on mitochondrial biogenesis by promoting the maturation of miR-181c. Journal of Biological Chemistry, 2022, 298, 102050.	3.4	4
7	At the heart of mitochondrial quality control: many roads to the top. Cellular and Molecular Life Sciences, 2021, 78, 3791-3801.	5.4	32
8	Elevated Asparagine Biosynthesis Drives Brain Tumor Stem Cell Metabolic Plasticity and Resistance to Oxidative Stress. Molecular Cancer Research, 2021, 19, 1375-1388.	3.4	6
9	Proteomics of Mouse Heart Ventricles Reveals Mitochondria and Metabolism as Major Targets of a Post-Infarction Short-Acting GLP1Ra-Therapy. International Journal of Molecular Sciences, 2021, 22, 8711.	4.1	4
10	Myocardial ultrastructure can augment genetic testing for sporadic dilated cardiomyopathy with initial heart failure. ESC Heart Failure, 2021, 8, 5178-5191.	3.1	2
11	Autophagy-mitophagy induction attenuates cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. JCI Insight, 2021, 6, .	5.0	23
12	Hypothermia promotes mitochondrial elongation In cardiac cells via inhibition of Drp1. Cryobiology, 2021, 102, 42-55.	0.7	2
13	Recruitment of pro-IL- $\hat{\Pi}$ t to mitochondrial cardiolipin, via shared LC3 binding domain, inhibits mitophagy and drives maximal NLRP3 activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	25
14	Sensing Protein Quality in Cardiac Myocytes p62 Triggers a Lysosomal Response. Circulation Research, 2020, 127, 519-521.	4.5	2
15	Neurotropin Inhibits Lipid Accumulation by Maintaining Mitochondrial Function in Hepatocytes via AMPK Activation. Frontiers in Physiology, 2020, 11, 950.	2.8	3
16	Intermittent Use of a Short-Course Glucagon-like Peptide-1 Receptor Agonist Therapy Limits Adverse Cardiac Remodeling via Parkin-dependent Mitochondrial Turnover. Scientific Reports, 2020, 10, 8284.	3.3	11
17	Parkin, an E3 ubiquitin ligase, enhances airway mitochondrial DNA release and inflammation. Thorax, 2020, 75, 717-724.	5.6	16
18	\hat{l}^2 2 \hat{a} €adrenoceptor activation improves skeletal muscle autophagy in neurogenic myopathy. FASEB Journal, 2020, 34, 5628-5641.	0.5	9

#	Article	IF	Citations
19	Minimal Invasive Pericardial Perfusion Model in Swine: A Translational Model for Cardiac Remodeling After Ischemia/Reperfusion Injury. Frontiers in Physiology, 2020, 11, 346.	2.8	O
20	MitoPlex: A targeted multiple reaction monitoring assay for quantification of a curated set of mitochondrial proteins. Journal of Molecular and Cellular Cardiology, 2020, 142, 1-13.	1.9	6
21	Abstract 14800: Presenilin 1 and Presenilin 2 Contribute to Mitophagy Including Alternative Pathway. Circulation, 2020, 142, .	1.6	O
22	Simvastatin induces autophagic flux to restore cerulein-impaired phagosome-lysosome fusion in acute pancreatitis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 165530.	3.8	24
23	Matrix-guided control of mitochondrial function in cardiac myocytes. Acta Biomaterialia, 2019, 97, 281-295.	8.3	11
24	Myocardial hypothermia increases autophagic flux, mitochondrial mass and myocardial function after ischemia-reperfusion injury. Scientific Reports, 2019, 9, 10001.	3.3	29
25	Pushing the Heart Over a KLF(15). Journal of the American College of Cardiology, 2019, 74, 1820-1822.	2.8	0
26	Unlocking the Secrets of Mitochondria in the Cardiovascular System. Circulation, 2019, 140, 1205-1216.	1.6	91
27	Murine macrophage autophagy protects against alcohol-induced liver injury by degrading interferon regulatory factor 1 (IRF1) and removing damaged mitochondria. Journal of Biological Chemistry, 2019, 294, 12359-12369.	3.4	25
28	Methionine Adenosyltransferase $\hat{l}\pm 1$ Is Targeted to the Mitochondrial Matrix and Interacts with Cytochrome P450 2E1 to Lower Its Expression. Hepatology, 2019, 70, 2018-2034.	7.3	27
29	Suppression of Cardiac Autophagy by Hyperinsulinemia in Insulin Receptor-Deficient Hearts Is Mediated by Insulin-Like Growth Factor Receptor Signaling. Antioxidants and Redox Signaling, 2019, 31, 444-457.	5.4	8
30	Autophagy plays a protective role against <i>Trypanosoma cruzi</i> infection in mice. Virulence, 2019, 10, 151-165.	4.4	18
31	Intercepting the Lipid-Induced Integrated Stress Response Reduces Atherosclerosis. Journal of the American College of Cardiology, 2019, 73, 1149-1169.	2.8	57
32	Coxsackievirus B infection induces the extracellular release of miR-590-5p, a proviral microRNA. Virology, 2019, 529, 169-176.	2.4	28
33	Decrease of Cardiac Parkin Protein in Obese Mice. Frontiers in Cardiovascular Medicine, 2019, 6, 191.	2.4	9
34	Myocardial fibrosis after adrenergic stimulation as a long-term sequela in a mouse model of Kawasaki disease vasculitis. JCI Insight, 2019, 4, .	5.0	13
35	Periodontal disease and its connection to systemic biomarkers of cardiovascular disease in young American Indian/Alaskan natives. Journal of Periodontology, 2018, 89, 219-227.	3.4	16
36	Super-Obese Patient-Derived iPSC Hypothalamic Neurons Exhibit Obesogenic Signatures and Hormone Responses. Cell Stem Cell, 2018, 22, 698-712.e9.	11.1	42

#	Article	IF	Citations
37	Antagonizing CD105 enhances radiation sensitivity in prostate cancer. Oncogene, 2018, 37, 4385-4397.	5.9	21
38	Cutting Edge: Mitochondrial Assembly of the NLRP3 Inflammasome Complex Is Initiated at Priming. Journal of Immunology, 2018, 200, 3047-3052.	0.8	109
39	Exosome-Mediated Benefits of Cell Therapy in Mouse and Human Models of Duchenne Muscular Dystrophy. Stem Cell Reports, 2018, 10, 942-955.	4.8	101
40	Physiological Mitochondrial Fragmentation Is a Normal Cardiac Adaptation to Increased Energy Demand. Circulation Research, 2018, 122, 282-295.	4.5	90
41	Dynamic Proteomic and miRNA Analysis of Polysomes from Isolated Mouse Heart After Langendorff Perfusion. Journal of Visualized Experiments, 2018, , .	0.3	3
42	Sex differences in ischemic heart disease and heart failure biomarkers. Biology of Sex Differences, 2018, 9, 43.	4.1	35
43	Proteomics reveals Rictor as a noncanonical TGF- \hat{l}^2 signaling target during aneurysm progression in Marfan mice. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1112-H1126.	3.2	20
44	Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. Journal of Clinical Investigation, 2018, 128, 4472-4484.	8.2	105
45	Oxidative muscles have better mitochondrial homeostasis than glycolytic muscles throughout life and maintain mitochondrial function during aging. Aging, 2018, 10, 3327-3352.	3.1	44
46	Proteomics Reveals Contextâ€Dependent Activation of Rictor Signaling by TGFβ in Vascular Smooth Muscle Cells. FASEB Journal, 2018, 32, .	0.5	0
47	Parkinâ€mediated mitophagy is downregulated in browning of white adipose tissue. Obesity, 2017, 25, 704-712.	3.0	45
48	Mitophagy and Mitochondrial Quality Control Mechanisms in the Heart. Current Pathobiology Reports, 2017, 5, 161-169.	3.4	37
49	Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy, 2017, 13, 1304-1317.	9.1	110
50	Exploring ribosome composition and newly synthesized proteins through proteomics and potential biomedical applications. Expert Review of Proteomics, 2017, 14, 529-543.	3.0	2
51	Hypercholesterolemia downregulates autophagy in the rat heart. Lipids in Health and Disease, 2017, 16, 60.	3.0	25
52	Myocardial stress and autophagy: mechanisms and potential therapies. Nature Reviews Cardiology, 2017, 14, 412-425.	13.7	133
53	Coxsackievirus B Escapes the Infected Cell in Ejected Mitophagosomes. Journal of Virology, 2017, 91, .	3.4	69
54	Delivering Instant Heat. Journal of the American College of Cardiology, 2017, 70, 1493-1495.	2.8	0

#	Article	IF	Citations
55	New and revisited approaches to preserving the reperfused myocardium. Nature Reviews Cardiology, 2017, 14, 679-693.	13.7	56
56	Mitochondrial function in engineered cardiac tissues is regulated by extracellular matrix elasticity and tissue alignment. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H757-H767.	3.2	48
57	Autophagosome formation is required for cardioprotection by chloramphenicol. Life Sciences, 2017, 186, 11-16.	4.3	11
58	Mitophagy and mitochondrial biogenesis in atrial tissue of patients undergoing heart surgery with cardiopulmonary bypass. JCI Insight, 2017, 2, e89303.	5.0	46
59	Bicarbonate Increases Ischemia-Reperfusion Damage by Inhibiting Mitophagy. PLoS ONE, 2016, 11, e0167678.	2.5	22
60	Discordant signaling and autophagy response to fasting in hearts of obese mice: Implications for ischemia tolerance. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H219-H228.	3.2	30
61	Mitochondrial remodeling: Rearranging, recycling, and reprogramming. Cell Calcium, 2016, 60, 88-101.	2.4	71
62	$\mbox{\sc (i) Ogg1}$ -Dependent DNA Repair Regulates NLRP3 Inflamma some and Prevents Atherosclerosis. Circulation Research, 2016, 119, e76-90.	4.5	135
63	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
64	α-MHC MitoTimer mouse: In vivo mitochondrial turnover model reveals remarkable mitochondrial heterogeneity in the heart. Journal of Molecular and Cellular Cardiology, 2016, 90, 53-58.	1.9	54
65	Lost in translation: miRNAs and mRNAs in ischemic preconditioning and ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2016, 95, 70-77.	1.9	25
66	Mitophagy is required for mitochondrial biogenesis and myogenic differentiation of C2C12 myoblasts. Autophagy, 2016, 12, 369-380.	9.1	276
67	The Association of Statin Use after Cancer Diagnosis with Survival in Pancreatic Cancer Patients: A SEER-Medicare Analysis. PLoS ONE, 2015, 10, e0121783.	2.5	57
68	This old heart: Cardiac aging and autophagy. Journal of Molecular and Cellular Cardiology, 2015, 83, 44-54.	1.9	91
69	Myocardial autophagic energy stress responses—macroautophagy, mitophagy, and glycophagy. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H1194-H1204.	3.2	57
70	Mitochondria shape cardiac metabolism. Science, 2015, 350, 1162-1163.	12.6	28
71	Untangling Autophagy Measurements. Circulation Research, 2015, 116, 504-514.	4.5	125
72	Mitochondrial quality control: Easy come, easy go. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 2802-2811.	4.1	91

#	Article	IF	Citations
73	MitoTimer: a novel protein for monitoring mitochondrial turnover in the heart. Journal of Molecular Medicine, 2015, 93, 271-278.	3.9	44
74	Recent progress in understanding coxsackievirus replication, dissemination, and pathogenesis. Virology, 2015, 484, 288-304.	2.4	83
75	A time to reap, a time to sow: Mitophagy and biogenesis in cardiac pathophysiology. Journal of Molecular and Cellular Cardiology, 2015, 78, 62-72.	1.9	62
76	Measuring Cardiac Autophagic Flux In Vitro and In Vivo. Methods in Molecular Biology, 2015, 1219, 187-197.	0.9	25
77	The Personal Human Oral Microbiome Obscures the Effects of Treatment on Periodontal Disease. PLoS ONE, 2014, 9, e86708.	2.5	79
78	The Role of Autophagy during Group B Streptococcus Infection of Blood-Brain Barrier Endothelium. Journal of Biological Chemistry, 2014, 289, 35711-35723.	3.4	50
79	The Impact of Juvenile Coxsackievirus Infection on Cardiac Progenitor Cells and Postnatal Heart Development. PLoS Pathogens, 2014, 10, e1004249.	4.7	13
80	Coxsackievirus B Exits the Host Cell in Shed Microvesicles Displaying Autophagosomal Markers. PLoS Pathogens, 2014, 10, e1004045.	4.7	258
81	Measurement of Mitochondrial Turnover and Life Cycle Using MitoTimer. Methods in Enzymology, 2014, 547, 21-38.	1.0	16
82	Reduction of Infarct Size by the Therapeutic Protein TAT-Ndi1 In Vivo. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 315-320.	2.0	12
83	Mitophagy Is Required for Acute Cardioprotection by Simvastatin. Antioxidants and Redox Signaling, 2014, 21, 1960-1973.	5.4	153
84	Autophagy and the human heart. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 369-370.	0.8	1
85	Cell-permeable protein therapy for complex I dysfunction. Journal of Bioenergetics and Biomembranes, 2014, 46, 337-345.	2.3	9
86	Polyamine depletion inhibits the autophagic response modulating <i><i>Trypanosoma cruzi </i><ii>infectivity. Autophagy, 2013, 9, 1080-1093.</ii></i>	9.1	32
87	Tragic heart, magic art. Heart Failure Reviews, 2013, 18, 555-555.	3.9	1
88	Autophagy: an affair of the heart. Heart Failure Reviews, 2013, 18, 575-584.	3.9	91
89	Activation of the Homeostatic Intracellular Repair Response During Cardiac Surgery. Journal of the American College of Surgeons, 2013, 216, 719-726.	0.5	36
90	Measuring Autophagy in Vivo. , 2013, , 181-189.		2

#	Article	IF	Citations
91	MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age. Autophagy, 2013, 9, 1887-1896.	9.1	100
92	MitoTimer. Autophagy, 2013, 9, 1852-1861.	9.1	143
93	Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. Journal of Clinical Investigation, 2013, 123, 5319-5333.	8.2	106
94	Indigestible mitochondria cause heartburn. Cell Research, 2012, 22, 1518-1520.	12.0	1
95	Mesencephalic Astrocyte-derived Neurotrophic Factor Protects the Heart from Ischemic Damage and Is Selectively Secreted upon Sarco/endoplasmic Reticulum Calcium Depletion. Journal of Biological Chemistry, 2012, 287, 25893-25904.	3.4	178
96	Endoplasmic reticulum protein BI-1 regulates Ca ²⁺ -mediated bioenergetics to promote autophagy. Genes and Development, 2012, 26, 1041-1054.	5.9	83
97	Autophagy, Myocardial Protection, and the Metabolic Syndrome. Journal of Cardiovascular Pharmacology, 2012, 60, 125-132.	1.9	42
98	The role of autophagy during coxsackievirus infection of neural progenitor and stem cells. Autophagy, 2012, 8, 938-953.	9.1	37
99	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
100	Mitochondria in Cardiac Disease. , 2012, , 63-82.		1
101	Molecular and cellular mechanisms involved in the <i>Trypanosoma cruzi</i> /li>/host cell interplay. IUBMB Life, 2012, 64, 387-396.	3.4	62
102	Cell Death Pathways in Acute Ischemia/Reperfusion Injury. Journal of Cardiovascular Pharmacology and Therapeutics, 2011, 16, 233-238.	2.0	133
103	Preconditioning Involves Selective Mitophagy Mediated by Parkin and p62/SQSTM1. PLoS ONE, 2011, 6, e20975.	2.5	290
104	Mitochondrial Therapeutics for Cardioprotection. Current Pharmaceutical Design, 2011, 17, 2017-2035.	1.9	42
105	Mitochondrial turnover in the heart. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1295-1301.	4.1	110
106	Impaired mitophagy at the heart of injury. Autophagy, 2011, 7, 1573-1574.	9.1	28
107	Acute induction of autophagy as a novel strategy for cardioprotection. Autophagy, 2011, 7, 432-433.	9.1	49
108	New Horizons in Cardioprotection. Circulation, 2011, 124, 1172-1179.	1.6	200

#	Article	IF	Citations
109	Cardioprotection through autophagy. Autophagy, 2011, 7, 434-435.	9.1	17
110	Contribution of Lethal Toxin and Edema Toxin to the Pathogenesis of Anthrax Meningitis. Infection and Immunity, 2011, 79, 2510-2518.	2.2	42
111	Xenotransplantation of Mitochondrial Electron Transfer Enzyme, Ndi1, in Myocardial Reperfusion Injury. PLoS ONE, 2011, 6, e16288.	2.5	23
112	Review: Autophagy: Definition, Molecular Machinery, and Potential Role in Myocardial Ischemia-Reperfusion Injury. Journal of Cardiovascular Pharmacology and Therapeutics, 2010, 15, 220-230.	2.0	101
113	Autophagy Induced by Ischemic Preconditioning is Essential for Cardioprotection. Journal of Cardiovascular Translational Research, 2010, 3, 365-373.	2.4	152
114	Mechanisms and Consequences of Cardiac Ischemia-Reperfusion Injury: Insights and Evidence to Improve Outcomes. American Journal of Cardiology, 2010, 106, S2.	1.6	8
115	Juvenile Exposure to Anthracyclines Impairs Cardiac Progenitor Cell Function and Vascularization Resulting in Greater Susceptibility to Stress-Induced Myocardial Injury in Adult Mice. Circulation, 2010, 121, 675-683.	1.6	176
116	Profound Cardioprotection With Chloramphenicol Succinate in the Swine Model of Myocardial Ischemia-Reperfusion Injury. Circulation, 2010, 122, S179-84.	1.6	132
117	Pim-1 Kinase Protects Mitochondrial Integrity in Cardiomyocytes. Circulation Research, 2010, 106, 1265-1274.	4.5	100
118	Autophagy in health and disease. 5. Mitophagy as a way of life. American Journal of Physiology - Cell Physiology, 2010, 299, C203-C210.	4.6	216
119	Autophagy and protein kinase C are required for cardioprotection by sulfaphenazole. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H570-H579.	3.2	77
120	Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy, 2010, 6, 462-472.	9.1	114
121	Autophagy During Cardiac Stress: Joys and Frustrations of Autophagy. Annual Review of Physiology, 2010, 72, 45-59.	13.1	247
122	Bnip3 mediates permeabilization of mitochondria and release of cytochrome c via a novel mechanism. Journal of Molecular and Cellular Cardiology, 2010, 48, 1146-1156.	1.9	86
123	LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H470-H479.	3.2	244
124	Autophagy in Ischemic Heart Disease. Circulation Research, 2009, 104, 150-158.	4.5	359
125	Modulation of Cardiac Function by Lipid Metabolites. Journal of Cardiovascular Pharmacology, 2009, 53, 187-188.	1.9	0
126	Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA. Basic Research in Cardiology, 2009, 104, 157-167.	5.9	84

#	Article	IF	Citations
127	Cardioprotection requires taking out the trash. Basic Research in Cardiology, 2009, 104, 169-180.	5.9	91
128	Chapter 16 Novel Methods for Measuring Cardiac Autophagy In Vivo. Methods in Enzymology, 2009, 453, 325-342.	1.0	57
129	Recycle or die: The role of autophagy in cardioprotection. Journal of Molecular and Cellular Cardiology, 2008, 44, 654-661.	1.9	177
130	Eat your heart out: Role of autophagy in myocardial ischemia/reperfusion. Autophagy, 2008, 4, 416-421.	9.1	77
131	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
132	A method to measure cardiac autophagic flux in vivo. Autophagy, 2008, 4, 322-329.	9.1	259
133	Chemotherapy and cardiotoxicity. Reviews in Cardiovascular Medicine, 2008, 9, 75-83.	1.4	50
134	Identification of Targets of Phosphorylation in Heart Mitochondria., 2007, 357, 127-138.		6
135	Heart mitochondria: gates of life and death. Cardiovascular Research, 2007, 77, 334-343.	3.8	345
136	CRYAB and HSPB2 deficiency alters cardiac metabolism and paradoxically confers protection against myocardial ischemia in aging mice. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H3201-H3209.	3.2	40
137	Bcl-2 family members and apoptosis, taken to heart. American Journal of Physiology - Cell Physiology, 2007, 292, C45-C51.	4.6	245
138	S1P1-Selective Agonist SEW2871 Exacerbates Reperfusion Arrhythmias. Journal of Cardiovascular Pharmacology, 2007, 50, 660-669.	1.9	32
139	The autophagic response to nutrient deprivation in the hl-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS Journal, 2007, 274, 3184-3197.	4.7	121
140	A Wave of Reactive Oxygen Species (ROS)-Induced ROS Release in a Sea of Excitable Mitochondria. Antioxidants and Redox Signaling, 2006, 8, 1651-1665.	5.4	158
141	Proapoptotic BCL-2 family members and mitochondrial dysfunction during ischemia/reperfusion injury, a study employing cardiac HL-1 cells and GFP biosensors. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 667-678.	1.0	98
142	Clinical Implications of Apoptosis in Ischemic Myocardium. Current Problems in Cardiology, 2006, 31, 181-264.	2.4	71
143	Autophagy as a Protective Response to Bnip3-Mediated Apoptotic Signaling in the Heart. Autophagy, 2006, 2, 307-309.	9.1	101
144	Enhancing Macroautophagy Protects against Ischemia/Reperfusion Injury in Cardiac Myocytes. Journal of Biological Chemistry, 2006, 281, 29776-29787.	3.4	497

#	Article	IF	Citations
145	Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature, 2005, 434, 658-662.	27.8	2,005
146	TAT-Mediated Protein Transduction. , 2005, , 81-90.		1
147	ICE-ing the Heart. Circulation Research, 2005, 96, 1036-1038.	4.5	7
148	Ischemia/reperfusion injury at the intersection with cell death. Journal of Molecular and Cellular Cardiology, 2005, 38, 21-33.	1.9	99
149	Cytochromes P450 and ischemic heart injury: Potential role for inhibitors in the treatment of myocardial infarction. Drug Discovery Today Disease Mechanisms, 2005, 2, 123-127.	0.8	5
150	TAT-mediated protein transduction: delivering biologically active proteins to the heart. Methods in Molecular Medicine, 2005, 112, 81-90.	0.8	10
151	Reduction of ischemia and reperfusion-induced myocardial damage by cytochrome P450 inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1321-1326.	7.1	158
152	Apoptosis Repressor with Caspase Recruitment Domain Protects against Cell Death by Interfering with Bax Activation. Journal of Biological Chemistry, 2004, 279, 21233-21238.	3.4	156
153	Mechanisms of Apoptosis in the Heart. Journal of Clinical Immunology, 2003, 23, 447-459.	3.8	123
154	Mitochondrial signaling in apoptosis: Mitochondrial daggers to the breaking heart. Basic Research in Cardiology, 2003, 98, 242-249.	5.9	43
155	Cytochrome P450: major player in reperfusion injury. Archives of Biochemistry and Biophysics, 2003, 420, 262-267.	3.0	83
156	Debatable contribution of mitochondrial swelling to cell swelling in ischemia. Journal of Molecular and Cellular Cardiology, 2003, 35, 735-737.	1.9	1
157	Cytochrome c dissociation and release from mitochondria by truncated Bid and ceramide. Mitochondrion, 2003, 2, 237-244.	3.4	31
158	Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. Journal of Cell Biology, 2003, 160, 65-75.	5.2	440
159	Calcineurin transgenic mice have mitochondrial dysfunction and elevated superoxide production. American Journal of Physiology - Cell Physiology, 2003, 284, C562-C570.	4.6	81
160	The Mitochondrial Voltage-dependent Anion Channel (VDAC) as a Therapeutic Target for Initiating Cell Death. Current Medicinal Chemistry, 2003, 10, 1527-1533.	2.4	57
161	TAT Protein Transduction Into Isolated Perfused Hearts. Circulation, 2002, 106, 735-739.	1.6	120
162	Inhibition of mitochondrial calcium-independent phospholipase A2 (iPLA2) attenuates mitochondrial phospholipid loss and is cardioprotective. Biochemical Journal, 2002, 362, 23-32.	3.7	136

#	Article	IF	CITATIONS
163	Calpain and Mitochondria in Ischemia/Reperfusion Injury. Journal of Biological Chemistry, 2002, 277, 29181-29186.	3.4	240
164	Analyzing mitochondrial changes during apoptosis. Methods, 2002, 26, 341-347.	3.8	75
165	Mitochondria: Regulators of Cell Death and Survival. Scientific World Journal, The, 2002, 2, 1569-1578.	2.1	47
166	Differential processing of cytosolic and mitochondrial caspases. Mitochondrion, 2001, 1, 61-69.	3.4	13
167	Differential Processing of Cytosolic and Mitochondrial Caspases. Scientific World Journal, The, 2001, 1, 42-42.	2.1	1
168	Proliferation, not apoptosis, alters epithelial cell migration in small intestine of CFTR null mice. American Journal of Physiology - Renal Physiology, 2001, 281, G681-G687.	3.4	47
169	Seeing death in the living. Nature Medicine, 2001, 7, 1277-1278.	30.7	24
170	Phosphorylation of Mitochondrial Elongation Factor Tu in Ischemic Myocardium. Circulation Research, 2001, 89, 461-467.	4.5	49
171	Mitochondria and Apoptosis. NeuroSignals, 2001, 10, 147-161.	0.9	89
172	Pharmacology of Caspase Inhibitors in Rabbit Cardiomyocytes Subjected to Metabolic Inhibition and Recovery. Antioxidants and Redox Signaling, 2001, 3, 113-123.	5.4	7
173	Bid Is Cleaved by Calpain to an Active Fragment in Vitro and during Myocardial Ischemia/Reperfusion. Journal of Biological Chemistry, 2001, 276, 30724-30728.	3.4	338
174	Differential Processing of Cytosolic and Mitochondrial Caspases. Scientific World Journal, The, 2001, 1, 42-42.	2.1	0
175	Role of Mitochondria in Apoptosis. Critical Reviews in Eukaryotic Gene Expression, 2000, 10, 231-9.	0.9	26
176	Regulation of the activity of caspases by L-carnitine and palmitoylcarnitine. FEBS Letters, 2000, 478, 19-25.	2.8	133
177	Mitochondria: execution central. FEBS Letters, 2000, 482, 6-12.	2.8	170
178	Nitrogen Cavitation for Cell Disruption to Obtain Mitochondria from Cultured Cells. Methods in Enzymology, 2000, 322, 213-221.	1.0	78
179	Role of Mitochondria in Apoptosis. Critical Reviews in Eukaryotic Gene Expression, 2000, 10, 10.	0.9	3
180	FACS Analysis of pH and Apoptosis. , 2000, , 490-495.		0

#	Article	IF	CITATIONS
181	Apoptosis in Myocardial Ischemia-Reperfusion. Annals of the New York Academy of Sciences, 1999, 874, 412-426.	3.8	188
182	Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death and Differentiation, 1999, 6, 987-991.	11.2	97
183	Mitochondria: Ignition Chamber for Apoptosis. Molecular Genetics and Metabolism, 1999, 68, 227-231.	1.1	15
184	Effect of Vacuolar Proton ATPase on pH _i , Ca ²⁺ , and Apoptosis in Neonatal Cardiomyocytes During Metabolic Inhibition/Recovery. Circulation Research, 1998, 82, 1139-1144.	4.5	82
185	Lack of Release of Cytochrome c from Mitochondria into Cytosol Early in the Course of Fas-mediated Apoptosis of Jurkat Cells. Journal of Biological Chemistry, 1998, 273, 19892-19894.	3.4	60
186	Role of the Vacuolar Proton Pump in Preconditioning. , 1998, , 23-37.		0
187	Bcl-2 and the Outer Mitochondrial Membrane in the Inactivation of Cytochrome c during Fas-mediated Apoptosis. Journal of Biological Chemistry, 1997, 272, 21878-21882.	3.4	161
188	Regulation of Fas-Mediated Apoptosis. Current Topics in Cellular Regulation, 1997, 35, 69-105.	9.6	6
189	Granulocyte Colony-Stimulating Factor Upregulates the Vacuolar Proton ATPase in Human Neutrophils. Blood, 1997, 90, 4598-4601.	1.4	22
190	New Paradigm for Lymphocyte Granule-mediated Cytotoxicity. Journal of Biological Chemistry, 1996, 271, 29073-29079.	3.4	320
191	Events in Apoptosis. Journal of Biological Chemistry, 1996, 271, 16260-16262.	3.4	99
192	Loss of Function of Cytochrome c in Jurkat Cells Undergoing Fas-mediated Apoptosis. Journal of Biological Chemistry, 1996, 271, 21629-21636.	3.4	206
193	The mammalian ultraviolet response is triggered by activation of src tyrosine kinases. Cell, 1992, 71, 1081-1091.	28.9	893
194	Acute renal failure in a female adolescent with leukemia in remission. Journal of Pediatrics, 1991, 119, 999-1006.	1.8	1
195	The pattern of MAP-2 binding on microtubules: visual enhancement of MAP attachment sites by antibody labeling and electron microscopy. Journal of Ultrastructure Research, 1983, 85, 175-185.	1.1	13
196	Identification of Targets of Phosphorylation in Heart Mitochondria., 0,, 279-291.		О