Ulises R RodrÃ-guez-Mendoza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3080763/publications.pdf

Version: 2024-02-01

106 papers 3,279 citations

33 h-index 53 g-index

107 all docs

107 docs citations

107 times ranked

2512 citing authors

#	Article	IF	CITATIONS
1	Multi-stimulus semiconductor Cu(<scp>i</scp>)–I-pyrimidine coordination polymer with thermo- and mechanochromic sensing. CrystEngComm, 2022, 24, 341-349.	2.6	6
2	Optical Temperature Sensor Capabilities of the Green Upconverted Luminescence of Er3+ in La3NbO7 Ceramic Powders. Crystals, 2022, 12, 455.	2.2	3
3	Stokes and upconverted luminescence in Er ³⁺ /Yb ³⁺ -doped Y ₃ Ga ₅ O ₁₂ nano-garnets. Dalton Transactions, 2021, 50, 9512-9518.	3.3	5
4	Statistical learning for the estimation of Judd-Ofelt parameters: A case study of Er3+: Doped tellurite glasses. Journal of Luminescence, 2021, 235, 118020.	3.1	4
5	1000ÂK optical ratiometric thermometer based on Er3+ luminescence in yttrium gallium garnet. Journal of Alloys and Compounds, 2021, 886, 161188.	5.5	12
6	Cu(I)–I-2,4-diaminopyrimidine Coordination Polymers with Optoelectronic Properties as a Proof of Concept for Solar Cells. Inorganic Chemistry, 2021, 60, 1208-1219.	4.0	11
7	Cunning defects: emission control by structural point defects on Cu(<scp>i</scp>)I double chain coordination polymers. Journal of Materials Chemistry C, 2020, 8, 1448-1458.	5.5	11
8	Raman-IR Spectroscopic Structural Analysis of Rare-Earth (RE3+) Doped Fluorotellurite Glasses at different laser wavelengths. Vibrational Spectroscopy, 2020, 106, 103020.	2.2	11
9	Judd-Ofelt parameters of RE3+-doped fluorotellurite glass (RE3+= Pr3+, Nd3+, Sm3+, Tb3+, Dy3+, Ho3+,) Tj ETQq	11.0.784 5.5	314 rgBT /O
10	Quantum cutting and near-infrared emissions in Ho3+/Yb3+ codoped transparent glass-ceramics. Journal of Luminescence, 2020, 226, 117424.	3.1	23
11	Structural and Lattice-Dynamical Properties of Tb ₂ O ₃ under Compression: A Comparative Study with Rare Earth and Related Sesquioxides. Inorganic Chemistry, 2020, 59, 9648-9666.	4.0	26
12	Upconversion and luminescence temperature sensitivity of Er3+ ions in yttrium oxysulfate nanophosphor. Optical Materials, 2019, 95, 109197.	3.6	15
13	Polarized Raman analyzes of (RE3+) doped fluorotellurite glass and ceramics. Vibrational Spectroscopy, 2019, 103, 102934.	2.2	6
14	A High-Pressure Investigation of the Synthetic Analogue of Chalcomenite, CuSeO3â ^{^™} 2H2O. Crystals, 2019, 9, 643.	2.2	8
15	Equation of state and structural characterization of Cu ₄ 1 ₄ 26 Cu ₄ 6 Cu _{6 Cu_{6 Cu_{7 Cu_{8 CH_{9 CH₉}}</br>}}	/s ៧៤ >unde	er5
16	Optical temperature sensor based on Sm3+ emissions in a fluorotellurite glass. Optical Fiber Technology, 2019, 47, 178-186.	2.7	20
17	Phase transitions of copper(I) iodide compounds under high pressure. Acta Crystallographica Section A: Foundations and Advances, 2019, 75, e306-e306.	0.1	0
18	High pressure luminescence of Nd3+ in YAlO3 perovskite nanocrystals: A crystal-field analysis. Journal of Chemical Physics, 2018, 148, 044201.	3.0	21

#	Article	IF	CITATIONS
19	High pressure sensitivity of anti-Stokes fluorescence in Nd3+ doped yttrium orthoaluminate nano-perovskites. Journal of Luminescence, 2018, 196, 20-24.	3.1	5
20	Comparison of the sensitivity as optical temperature sensor of nano-perovskite doped with Nd3+ ions in the first and second biological windows. Sensors and Actuators B: Chemical, 2018, 255, 970-976.	7.8	110
21	Experimental and theoretical study on the optical properties of LaVO ₄ crystals under pressure. Physical Chemistry Chemical Physics, 2018, 20, 27314-27328.	2.8	26
22	Lanthanide-doped Y3Ga5O12 garnets for nanoheating and nanothermometry in the first biological window. Optical Materials, 2018, 84, 46-51.	3.6	25
23	Smart composite films of nanometric thickness based on copper–iodine coordination polymers. Toward sensors. Chemical Science, 2018, 9, 8000-8010.	7.4	44
24	Analysis of the upconversion emission of yttrium orthoaluminate nano-perovskite co-doped with Er3+/Yb3+ ions for thermal sensing applications. Journal of Luminescence, 2018, 202, 316-321.	3.1	14
25	Up-conversion processes in Ln(III)-doped luminescent materials for photovoltaics and photocatalysis., 2018,, 291-333.		1
26	Nanoperovskite doped with Yb3+ and Tm3+ ions used as an optical upconversion temperature sensor. Optical Materials, 2018, 83, 187-191.	3.6	9
27	Structural behaviour of copper(I) iodine compounds under high pressure. Acta Crystallographica Section A: Foundations and Advances, 2018, 74, e275-e275.	0.1	0
28	Pressure-induced effects on the spectroscopic properties of Nd 3+ in MgO:LiNbO 3 single crystal. A crystal field approach. Journal of Luminescence, 2017, 184, 293-303.	3.1	6
29	Spectroscopic properties of Nd 3+ ions in YAP nano-perovskites. Journal of Luminescence, 2017, 188, 204-208.	3.1	9
30	Multistimuli Response Micro―and Nanolayers of a Coordination Polymer Based on Cu ₂ 1 ₂ Chains Linked by 2â€Aminopyrazine. Small, 2017, 13, 1700965.	10.0	43
31	Structural, Vibrational, and Elastic Properties of Yttrium Orthoaluminate Nanoperovskite at High Pressures. Journal of Physical Chemistry C, 2017, 121, 15353-15367.	3.1	13
32	Yttrium orthoaluminate nanoperovskite doped with Tm^3+ ions as upconversion optical temperature sensor in the near-infrared region. Optics Express, 2017, 25, 27845.	3.4	22
33	Random laser action in stoichiometric Nd ₃ Ga ₅ O ₁₂ garnet crystal powder. Laser Physics Letters, 2016, 13, 035402.	1.4	11
34	Stokes and anti-Stokes luminescence in Tm ³⁺ /Yb ³⁺ -doped Lu ₃ Ga ₅ O ₁₂ nano-garnets: a study of multipolar interactions and energy transfer dynamics. Physical Chemistry Chemical Physics, 2016, 18, 14720-14729.	2.8	19
35	NIR upconversion emission of Tm 3+ doped glassceramics for solar cells applications. Journal of Luminescence, 2016, 179, 40-43.	3.1	12
36	2CaO·Al 2 O 3 :Er 3+ glass: An efficient optical temperature sensor. Journal of Luminescence, 2016, 179, 272-279.	3.1	54

#	Article	IF	CITATIONS
37	Experimental and $\langle i \rangle$ ab Initio $\langle i \rangle$ Study of Catena(bis($\hat{i} \frac{1}{4} \langle sub \rangle 2 \langle sub \rangle$ -iodo)-6-methylquinoline-copper(I)) under Pressure: Synthesis, Crystal Structure, Electronic, and Luminescence Properties. Inorganic Chemistry, 2016, 55, 7476-7484.	4.0	27
38	Pressure-induced amorphization of YVO ₄ :Eu ³⁺ nanoboxes. Nanotechnology, 2016, 27, 025701.	2.6	19
39	Nd3+-doped TeO2–PbF2–AlF3 glasses for laser applications. Optical Materials, 2016, 51, 35-41.	3.6	53
40	Experimental and theoretical study of <i>α</i> –Eu ₂ (MoO ₄) ₃ under compression. Journal of Physics Condensed Matter, 2015, 27, 465401.	1.8	5
41	Optical temperature sensor based on the Nd3+ infrared thermalized emissions in a fluorotellurite glass. Journal of Luminescence, 2015, 166, 209-214.	3.1	38
42	Chemical pressure effects on the spectroscopic properties of Nd^3+-doped gallium nano-garnets. Optical Materials Express, 2015, 5, 1661.	3.0	34
43	Optimizing white light luminescence in Dy3+-doped Lu3Ga5O12 nano-garnets. Journal of Applied Physics, 2014, 116, .	2.5	24
44	Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method. Current Applied Physics, 2014, 14, 72-81.	2.4	24
45	Optical nanothermometer based on the calibration of the Stokes and upconverted green emissions of Er ³⁺ ions in Y ₃ Ga ₅ O ₁₂ nano-garnets. RSC Advances, 2014, 4, 57691-57701.	3.6	22
46	Formation of nanostructures in Eu3+ doped glass–ceramics: an XAS study. Acta Crystallographica Section A: Foundations and Advances, 2014, 70, C959-C959.	0.1	0
47	Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors. Sensors and Actuators B: Chemical, 2013, 186, 156-164.	7.8	107
48	Formation of nanostructures in Eu ³⁺ doped glass–ceramics: an XAS study. Journal of Physics Condensed Matter, 2013, 25, 025303.	1.8	4
49	Effects of Er3+ concentration on thermal sensitivity in optical temperature fluorotellurite glass sensors. Sensors and Actuators B: Chemical, 2013, 176, 1167-1175.	7.8	137
50	Spectroscopic properties of Sm3+ ions in phosphate and fluorophosphate glasses. Journal of Non-Crystalline Solids, 2013, 365, 85-92.	3.1	62
51	Nd3+-doped Ca3Ga2Ge3O12 garnet: A new optical pressure sensor. Journal of Applied Physics, 2013, 113, .	2.5	37
52	High pressure tuning of whispering gallery mode resonances in a neodymium-doped glass microsphere. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 3254.	2.1	18
53	Optical pressure and temperature sensor based on the luminescence properties of Nd^3+ ion in a gadolinium scandium gallium garnet crystal. Optics Express, 2012, 20, 10393.	3.4	32
54	Structural and Luminescence Properties of Ho ³⁺ -Doped Lu3Ga5O12 Nano-Garnets for Phosphor Applications. Journal of Nanoscience and Nanotechnology, 2012, 12, 4495-4501.	0.9	7

#	Article	IF	CITATIONS
55	Role of the host matrix on the thermal sensitivity of Er3+ luminescence in optical temperature sensors. Sensors and Actuators B: Chemical, 2012, 174, 176-186.	7.8	168
56	Synthesis, structure and luminescence of Er3+-doped Y3Ga5O12 nano-garnets. Journal of Materials Chemistry, 2012, 22, 13788.	6.7	62
57	Er3+–Yb3+ codoped phosphate glasses used for an efficient 1.5Î⅓m broadband gain medium. Optical Materials, 2012, 34, 1235-1240.	3.6	69
58	Upconversion mechanisms in rare-earth doped glasses to improve the efficiency of silicon solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1671-1677.	6.2	99
59	Structural study of Eu2(MoO4)3and Sm2(MoO4)3polymorphs. Acta Crystallographica Section A: Foundations and Advances, 2011, 67, C249-C249.	0.3	0
60	Optical characterization, $1.5^{1\frac{1}{4}}$ m emission and IR-to-visible energy upconversion in Er3+-doped fluorotellurite glasses. Journal of Luminescence, 2011, 131, 1239-1248.	3.1	66
61	Temperature sensor based on the Er3+ green upconverted emission in a fluorotellurite glass. Sensors and Actuators B: Chemical, 2011, 158, 208-213.	7.8	245
62	Structural study of the Eu3+ environments in fluorozirconate glasses: Role of the temperature-induced and the pressure-induced phase transition processes in the development of a rare earth's local structure model. Journal of Chemical Physics, 2009, 130, 154501.	3.0	21
63	Spectral investigations on Dy3+-doped transparent oxyfluoride glasses and nanocrystalline glass ceramics. Journal of Applied Physics, 2009, 105, .	2.5	69
64	Effect of pressure on the luminescence properties of Nd3+ doped SrWO4 laser crystal. Journal of Alloys and Compounds, 2008, 451, 212-214.	5.5	21
65	Effects of Er3+and Yb3+doping on non-linear properties of double lithium sulfates. Acta Crystallographica Section A: Foundations and Advances, 2008, 64, C468-C468.	0.3	0
66	Evolution of the structural and optical properties from cobalt cordierite glass to glass-ceramic based on spinel crystalline phase materials. Journal of Non-Crystalline Solids, 2007, 353, 4093-4101.	3.1	28
67	Dopant partitioning influence on the near-infrared emissions of Tm3+ in oxyfluoride glass ceramics. Journal of Applied Physics, 2006, 99, 053103.	2.5	23
68	Ultraviolet and visible upconversion luminescence in Nd3+-doped oxyfluoride glasses and glass ceramics obtained by different preparation methods. Journal of Applied Physics, 2006, 99, 113510.	2.5	24
69	Pressure- and temperature-induced structural phase transitions in fluoride matrices monitoring by Eu3+luminescence. High Pressure Research, 2006, 26, 411-414.	1.2	2
70	High-pressure luminescence in Nd3+-doped MgO:LiNbO3. High Pressure Research, 2006, 26, 341-344.	1.2	11
71	Analysis of the Eu3+emission in a SrWO4laser matrix under pressure. High Pressure Research, 2006, 26, 355-359.	1.2	13
72	Infrared-to-visible photon avalanche upconversion dynamics in Ho3+-doped fluorozirconate glasses at room temperature. Optical Materials, 2005, 27, 1754-1761.	3.6	40

#	Article	IF	CITATIONS
73	Rare earths in nanocrystalline glass–ceramics. Optical Materials, 2005, 27, 1762-1770.	3.6	62
74	Room temperature photon avalanche up-conversion in Ho3+ doped fluoroindate glasses under excitation at 747 nm. Optical Materials, 2004, 25, 209-213.	3.6	18
75	Optical properties and site distribution of Cr3+ ions in alkali-disilicate glasses. Journal of Luminescence, 2004, 106, 77-90.	3.1	8
76	Optical properties of single doped Cr3+ and co-doped Cr3+–Nd3+ aluminum tantalum tellurite glasses. Journal of Alloys and Compounds, 2004, 380, 163-166.	5.5	17
77	Optical intensities of Pr3+ ions in transparent oxyfluoride glass and glass–ceramic. Applications of the standard and modified Judd–Ofelt theories. Journal of Alloys and Compounds, 2004, 380, 167-172.	5.5	48
78	Synthesis, electrical properties, and optical characterization of Eu3+-doped La2Mo2O9 nanocrystalline phosphors. Journal of Non-Crystalline Solids, 2004, 345-346, 377-381.	3.1	47
79	Optical properties of Nd3+ ions in oxyfluoride glasses and glass ceramics comparing different preparation methods. Journal of Applied Physics, 2004, 95, 5271-5279.	2.5	83
80	Optical spectroscopy analysis of the Eu3+ ions local structure in calcium diborate glasses. Journal of Non-Crystalline Solids, 2003, 319, 200-216.	3.1	91
81	Site selective study of Eu3+-doped transparent oxyfluoride glass ceramics. Journal of Applied Physics, 2003, 94, 2295-2301.	2.5	55
82	Optical Properties of Rare Earth Doped Transparent Oxyfluoride Glass Ceramics. Radiation Effects and Defects in Solids, 2003, 158, 457-462.	1.2	7
83	Room temperature photon avalanche upconversion in Ho3+doped fluoroindate glasses under excitation at 749 nm., 2003, 4829, 141.		0
84	Pressure-induced dark-to-bright transition inLu2O3:Ce3+. Physical Review B, 2002, 65, .	3.2	21
85	Spectroscopic Monitoring of the Eu 3+ Ion Local Structure in the Pressure Induced Amorphization Of EuZrF 7 Polycrystal. High Pressure Research, 2002, 22, 111-114.	1.2	6
86	Optical properties of Er3+ ions in transparent glass ceramics. Journal of Alloys and Compounds, 2001, 323-324, 753-758.	5.5	81
87	Cr3+–Tm3+ energy transfer in alkali silicate glasses. Journal of Alloys and Compounds, 2001, 323-324, 759-762.	5.5	6
88	Role of the Eu3+ ions in the formation of transparent oxyfluoride glass ceramics. Journal of Applied Physics, 2001, 89, 5307-5310.	2.5	55
89	High-pressure luminescence studies inCe3+:Lu2SiO5. Physical Review B, 2001, 64, .	3.2	26
90	Spectroscopy of rare earth ions in fluoride glasses for laser applications. Optical Materials, 1999, 13, 1-7.	3.6	35

#	Article	IF	CITATIONS
91	Upconversion dynamics in Er3+-doped fluoroindate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 935-940.	3.9	23
92	Infrared, blue and ultraviolet upconversion emissions in Yb3+–Tm3+-doped fluoroindate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 941-945.	3.9	36
93	Fano antiresonances of Cr3+ in alkaline disilicate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 1319-1322.	3.9	15
94	Transfer and back transfer processes in Yb3+–Er3+ codoped fluoroindate glasses. Journal of Applied Physics, 1999, 86, 935-939.	2.5	20
95	Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction. Journal of Chemical Physics, 1999, 111, 1191-1194.	3.0	87
96	Energy transfer between Eu3+ions in calcium diborate glasses. Journal of Physics Condensed Matter, 1999, 11, 8739-8747.	1.8	19
97	Upconversion dynamics in Yb3+–Ho3+ doped fluoroindate glasses. Journal of Alloys and Compounds, 1998, 275-277, 345-348.	5.5	50
98	Time-resolved fluorescence line narrowing inYb3+-doped fluoroindate glasses. Physical Review B, 1998, 57, 3396-3401.	3.2	15
99	Kinetics of transfer and backtransfer in Yb3+-Er3+ codoped fluoroindate glasses. Journal of Luminescence, 1997, 72-74, 954-955.	3.1	7
100	Site distribution in Cr3+ and Cr3+-Tm3+-doped alkaline silicate glasses. Journal of Luminescence, 1997, 72-74, 446-448.	3.1	9
101	Site selective study in Eu3+-doped fluorozirconate glasses and glass-ceramics. Journal of Luminescence, 1997, 72-74, 437-438.	3.1	33
102	Optical properties of Eu3+ and Ho3+ in fluoride glasses. Journal of Applied Spectroscopy, 1995, 62, 766-770.	0.7	4
103	Excited-state dynamics in Yb3+-Ho3+-doped fluoroindate glasses. Journal of Applied Spectroscopy, 1995, 62, 865-871.	0.7	12
104	Optical spectroscopy of Cr3+ and Cr3+-Tm3+ in alkaline silicate glasses. Journal of Applied Spectroscopy, 1995, 62, 895-899.	0.7	0
105	Mn ²⁺ luminescence in Mg-Ai spinels. Radiation Effects and Defects in Solids, 1995, 136, 29-32.	1.2	15
106	Site selective spectroscopy of Eu ³⁺ and Eu ³⁺ -Ho ³⁺ doped glasses. Radiation Effects and Defects in Solids, 1995, 135, 105-108.	1.2	7