

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/30795/publications.pdf Version: 2024-02-01

Diliii

#	Article	IF	CITATIONS
1	Simultaneous engineering of an enzyme's entrance tunnel and active site: the case of monoamine oxidase MAO-N. Chemical Science, 2017, 8, 4093-4099.	7.4	88
2	Efficient O-Glycosylation of Triterpenes Enabled by Protein Engineering of Plant Glycosyltransferase UGT74AC1. ACS Catalysis, 2020, 10, 3629-3639.	11.2	72
3	Engineering a d-lactate dehydrogenase that can super-efficiently utilize NADPH and NADH as cofactors. Scientific Reports, 2016, 6, 24887.	3.3	29
4	Computational Insights into the Catalytic Mechanism of Bacterial Carboxylic Acid Reductase. Journal of Chemical Information and Modeling, 2019, 59, 832-841.	5.4	26
5	Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose. Journal of Agricultural and Food Chemistry, 2020, 68, 15257-15266.	5.2	24
6	Quantitative Analysis of the Substrate Specificity of Human Rhinovirus 3C Protease and Exploration of Its Substrate Recognition Mechanisms. ACS Chemical Biology, 2020, 15, 63-73.	3.4	14
7	Totally atom-economical synthesis of lactic acid from formaldehyde: combined bio-carboligation and chemo-rearrangement without the isolation of intermediates. Green Chemistry, 2020, 22, 6809-6814.	9.0	14
8	Non-natural Aldol Reactions Enable the Design and Construction of Novel One-Carbon Assimilation Pathways in vitro. Frontiers in Microbiology, 2021, 12, 677596.	3.5	13
9	Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors. PLoS Biology, 2019, 17, e3000229.	5.6	12
10	Structure-based QSAR, molecule design and bioassays of protease-activated receptor 1 inhibitors. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2853-2867.	3.5	11
11	Identification of a Different Agonist-Binding Site and Activation Mechanism of the Human P2Y1 Receptor. Scientific Reports, 2017, 7, 13764.	3.3	10
12	Study of the mechanism of protonated histidine-induced conformational changes in the Zika virus dimeric envelope protein using accelerated molecular dynamic simulations. Journal of Molecular Graphics and Modelling, 2017, 74, 203-214.	2.4	9
13	One-pot chemoenzymatic synthesis of glycolic acid from formaldehyde. Green Chemistry, 2022, 24, 5064-5069.	9.0	9
14	Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. Angewandte Chemie, 2018, 130, 5516-5520.	2.0	8
15	Analyzing the genetic characteristics of a tryptophan-overproducing Escherichia coli. Bioprocess and Biosystems Engineering, 2021, 44, 1685-1697.	3.4	6
16	Biomimetische DNAâ€Nanoröhren: Gezielte Synthese und Anwendung nanoskopischer KanÃæ. Angewandte Chemie, 2019, 131, 9092-9108.	2.0	4
17	Directed Evolution and Rational Design of Mechanosensitive Channel MscCG2 for Improved Glutamate Excretion Efficiency. Journal of Agricultural and Food Chemistry, 2021, 69, 15660-15669.	5.2	2
18	Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing. Biodesign Research, 2022, 2022, .	1.9	2

		Pi Liu		
#	Article		IF	CITATIONS
19	DNA Origamiâ \in Encoded Integration of Heterostructures. Angewandte Chemie, 0, , .		2.0	1