
Xu Lian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3079120/publications.pdf Version: 2024-02-01

ΧιιΓιανι

#	Article	IF	CITATIONS
1	Greening of the Earth and its drivers. Nature Climate Change, 2016, 6, 791-795.	8.1	1,675
2	Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 2019, 25, 1922-1940.	4.2	944
3	Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 2020, 1, 14-27.	12.2	889
4	Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7, 432-436.	8.1	323
5	Divergent hydrological response to large-scale afforestation and vegetation greening in China. Science Advances, 2018, 4, eaar4182.	4.7	287
6	Multifaceted characteristics of dryland aridity changes in a warming world. Nature Reviews Earth & Environment, 2021, 2, 232-250.	12.2	281
7	Summer soil drying exacerbated by earlier spring greening of northern vegetation. Science Advances, 2020, 6, eaax0255.	4.7	258
8	Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nature Climate Change, 2018, 8, 640-646.	8.1	219
9	Extension of the growing season increases vegetation exposure to frost. Nature Communications, 2018, 9, 426.	5.8	190
10	Human-induced greening of the northern extratropical land surface. Nature Climate Change, 2016, 6, 959-963.	8.1	145
11	Impact of Earth Greening on the Terrestrial Water Cycle. Journal of Climate, 2018, 31, 2633-2650.	1.2	142
12	The impacts of climate extremes on the terrestrial carbon cycle: A review. Science China Earth Sciences, 2019, 62, 1551-1563.	2.3	134
13	Temporal trade-off between gymnosperm resistance and resilience increases forest sensitivity to extreme drought. Nature Ecology and Evolution, 2020, 4, 1075-1083.	3.4	134
14	Plausible rice yield losses under future climate warming. Nature Plants, 2017, 3, 16202.	4.7	114
15	Spatiotemporal pattern of terrestrial evapotranspiration in China during the past thirty years. Agricultural and Forest Meteorology, 2018, 259, 131-140.	1.9	75
16	Deforestation-induced warming over tropical mountain regions regulated by elevation. Nature Geoscience, 2021, 14, 23-29.	5.4	73
17	Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere. Nature Climate Change, 2022, 12, 581-586.	8.1	47
18	Responses of land evapotranspiration to Earth's greening in CMIP5 Earth System Models. Environmental Research Letters, 2016, 11, 104006.	2.2	46

Xu Lian

#	Article	IF	CITATIONS
19	Evaluating biases in simulated land surface albedo from CMIP5 global climate models. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6178-6190.	1.2	46
20	Seasonal biological carryover dominates northern vegetation growth. Nature Communications, 2021, 12, 983.	5.8	45
21	Attribution of seasonal leaf area index trends in the northern latitudes with "optimally―integrated ecosystem models. Clobal Change Biology, 2017, 23, 4798-4813.	4.2	41
22	Vegetation forcing modulates global land monsoon and water resources in a CO2-enriched climate. Nature Communications, 2020, 11, 5184.	5.8	37
23	Emerging negative impact of warming on summer carbon uptake in northern ecosystems. Nature Communications, 2018, 9, 5391.	5.8	31
24	Regional patterns of future runoff changes from Earth system models constrained by observation. Geophysical Research Letters, 2017, 44, 5540-5549.	1.5	26
25	Biophysical impacts of northern vegetation changes on seasonal warming patterns. Nature Communications, 2022, 13, .	5.8	26
26	Spatiotemporal variations in the difference between satelliteâ€observed daily maximum land surface temperature and stationâ€based daily maximum nearâ€surface air temperature. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2254-2268.	1.2	24
27	Comment on "Satellites reveal contrasting responses of regional climate to the widespread greening of Earth― Science, 2018, 360, .	6.0	19
28	Vegetation Response to Rising CO ₂ Amplifies Contrasts in Water Resources Between Global Wet and Dry Land Areas. Geophysical Research Letters, 2021, 48, e2021GL094293.	1.5	16
29	Seasonal Responses of Terrestrial Carbon Cycle to Climate Variations in CMIP5 Models: Evaluation and Projection. Journal of Climate, 2017, 30, 6481-6503.	1.2	12
30	Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons. Nature Communications, 2022, 13, .	5.8	8
31	Vegetation Physiological Response to Increasing Atmospheric CO ₂ Slows the Decreases in the Seasonal Amplitude of Temperature. Geophysical Research Letters, 2022, 49, .	1.5	5
32	Reply to: Disentangling biology from mathematical necessity in twentieth-century gymnosperm resilience trends. Nature Ecology and Evolution, 2021, 5, 736-737.	3.4	1