
Francisco David Carmona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antioxidation, Anti-Inflammation, and Regulation of SRD5A Gene Expression of Oryza sativa cv. Bue Bang 3 CMU Husk and Bran Extracts as Androgenetic Alopecia Molecular Treatment Substances. Plants, 2022, 11, 330.	1.6	10
2	A GWAS in Idiopathic/Unexplained Infertile Men Detects a Genomic Region Determining Follicle-Stimulating Hormone Levels. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 2350-2361.	1.8	4
3	Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only Syndrome. Journal of Personalized Medicine, 2022, 12, 932.	1.1	0
4	Common genetic variation in <i>KATNAL1</i> non oding regions is involved in the susceptibility to severe phenotypes of male infertility. Andrology, 2022, 10, 1339-1350.	1.9	5
5	Methylenetetrahydrofolate Reductase (MTHFR) Gene Polymorphism and Infant's Anthropometry at Birth. Nutrients, 2021, 13, 831.	1.7	11
6	Effects on Steroid 5-Alpha Reductase Gene Expression of Thai Rice Bran Extracts and Molecular Dynamics Study on SRD5A2. Biology, 2021, 10, 319.	1.3	18
7	Effect and in silico characterization of genetic variants associated with severe spermatogenic disorders in a large Iberian cohort. Andrology, 2021, 9, 1151-1165.	1.9	12
8	Genetic Association of a Gainâ€ofâ€Function <i>IFNGR1</i> Polymorphism and the Intergenic Region <i>LNCAROD/DKK1</i> With Behçet's Disease. Arthritis and Rheumatology, 2021, 73, 1244-1252.	2.9	21
9	Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment. Journal of Personalized Medicine, 2021, 11, 22.	1.1	10
10	<i>GNAl2</i> variants predict nonsteroidal antiâ€inflammatory drug hypersensitivity in a genomeâ€wide study. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1250-1253.	2.7	8
11	Intronic variation of the SOHLH2 gene confers risk to male reproductive impairment. Fertility and Sterility, 2020, 114, 398-406.	0.5	9
12	Genetic Landscape of Nonobstructive Azoospermia and New Perspectives for the Clinic. Journal of Clinical Medicine, 2020, 9, 300.	1.0	51
13	Deficiency of the onco-miRNA cluster, miR-106bâ^1⁄425, causes oligozoospermia and the cooperative action of miR-106bâ^1⁄425 and miR-17â^1⁄492 is required to maintain male fertility. Molecular Human Reproduction, 2020, 26, 389-401.	, 1.3	10
14	GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nature Communications, 2019, 10, 4955.	5.8	100
15	Association between Genetic Polymorphisms of Inflammatory Response Genes and Acute Pancreatitis. Immunological Investigations, 2019, 48, 585-596.	1.0	5
16	Genetic Basis of Vasculitides with Neurologic Involvement. Neurologic Clinics, 2019, 37, 219-234.	0.8	4
17	Identification of a 3′â€Untranslated Genetic Variant of <i><scp>RARB</scp></i> Associated With Carotid Intimaâ€Media Thickness in Rheumatoid Arthritis: A Genomeâ€Wide Association Study. Arthritis and Rheumatology, 2019, 71, 351-360.	2.9	26
18	Cross-phenotype analysis of Immunochip data identifies <i>KDM4C</i> as a relevant <i>locus</i> for the development of systemic vasculitis. Annals of the Rheumatic Diseases. 2018, 77, 589-595.	0.5	27

0

#	Article	IF	CITATIONS
19	Genetics of immunoglobulin-A vasculitis (Henoch-Schönlein purpura): An updated review. Autoimmunity Reviews, 2018, 17, 301-315.	2.5	72
20	The potential of PTPN22 as a therapeutic target for rheumatoid arthritis. Expert Opinion on Therapeutic Targets, 2018, 22, 879-891.	1.5	16
21	Germ cell desquamation-based testis regression in a seasonal breeder, the Egyptian long-eared hedgehog, Hemiechinus auritus. PLoS ONE, 2018, 13, e0204851.	1.1	18
22	A large-scale genetic analysis reveals an autoimmune origin of idiopathic retroperitoneal fibrosis. Journal of Allergy and Clinical Immunology, 2018, 142, 1662-1665.	1.5	17
23	Sertoli cell-specific ablation of miR-17-92 cluster significantly alters whole testis transcriptome without apparent phenotypic effects. PLoS ONE, 2018, 13, e0197685.	1.1	11
24	Comprehensive analysis of three TYK2 gene variants in the susceptibility to Chagas disease infection and cardiomyopathy. PLoS ONE, 2018, 13, e0190591.	1.1	4
25	Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Scientific Reports, 2017, 7, 43953.	1.6	52
26	A Genome-wide Association Study Identifies Risk Alleles in Plasminogen and P4HA2 Associated with Giant Cell Arteritis. American Journal of Human Genetics, 2017, 100, 64-74.	2.6	78
27	A genome-wide association study suggests the HLA Class II region as the major susceptibility locus for IgA vasculitis. Scientific Reports, 2017, 7, 5088.	1.6	44
28	An MIF Promoter Polymorphism Is Associated with Susceptibility to Pulmonary Arterial Hypertension in Diffuse Cutaneous Systemic Sclerosis. Journal of Rheumatology, 2017, 44, 1453-1457.	1.0	25
29	Genetic Analysis with the Immunochip Platform in Behçet Disease. Identification of Residues Associated in the HLA Class I Region and New Susceptibility Loci. PLoS ONE, 2016, 11, e0161305.	1.1	48
30	Emerging aspects of molecular biomarkers for diagnosis, prognosis and treatment response in rheumatoid arthritis. Expert Review of Molecular Diagnostics, 2016, 16, 663-675.	1.5	12
31	Analysis of Systemic Sclerosis-associated Genes in a Turkish Population. Journal of Rheumatology, 2016, 43, 1376-1379.	1.0	5
32	Evaluation of VDR gene polymorphisms in Trypanosoma cruzi infection and chronic Chagasic cardiomyopathy. Scientific Reports, 2016, 6, 31263.	1.6	13
33	New insights into the pathogenesis of giant cell arteritis and hopes for the clinic. Expert Review of Clinical Immunology, 2016, 12, 57-66.	1.3	18
34	IL18 Gene Variants Influence the Susceptibility to Chagas Disease. PLoS Neglected Tropical Diseases, 2016, 10, e0004583.	1.3	24
35	Single Nucleotide Polymorphism Clustering in Systemic Autoimmune Diseases. PLoS ONE, 2016, 11, e0160270.	1.1	4

HLA System and Giant Cell Arteritis. , 2016, , 97-108.

#	Article	IF	CITATIONS
37	PTGER4 gene variant rs76523431 is a candidate risk factor for radiological joint damage in rheumatoid arthritis patients: a genetic study of six cohorts. Arthritis Research and Therapy, 2015, 17, 306.	1.6	18
38	Protective Role of the Interleukin 33 rs3939286 Gene Polymorphism in the Development of Subclinical Atherosclerosis in Rheumatoid Arthritis Patients. PLoS ONE, 2015, 10, e0143153.	1.1	21
39	Genetics of vasculitis. Current Opinion in Rheumatology, 2015, 27, 10-17.	2.0	47
40	A Large-Scale Genetic Analysis Reveals a Strong Contribution of the HLA Class II Region to Giant Cell Arteritis Susceptibility. American Journal of Human Genetics, 2015, 96, 565-580.	2.6	144
41	HLA-DRA variants predict penicillin allergy in genome-wide fine-mapping genotyping. Journal of Allergy and Clinical Immunology, 2015, 135, 253-259.e10.	1.5	72
42	Genetic component of giant cell arteritis. Rheumatology, 2014, 53, 6-18.	0.9	83
43	Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis. American Journal of Human Genetics, 2014, 94, 47-61.	2.6	182
44	Evidence of association of the <i>NLRP1</i> gene with giant cell arteritis. Annals of the Rheumatic Diseases, 2013, 72, 628-630.	0.5	23
45	New insight on the Xq28 association with systemic sclerosis. Annals of the Rheumatic Diseases, 2013, 72, 2032-2038.	0.5	52
46	Identification of the <i>PTPN22</i> functional variant R620W as susceptibility genetic factor for giant cell arteritis. Annals of the Rheumatic Diseases, 2013, 72, 1882-1886.	0.5	51
47	The Systemic Lupus Erythematosus IRF5 Risk Haplotype Is Associated with Systemic Sclerosis. PLoS ONE, 2013, 8, e54419.	1.1	38
48	Novel identification of the <i>IRF7</i> region as an anticentromere autoantibody propensity locus in systemic sclerosis. Annals of the Rheumatic Diseases, 2012, 71, 114-119.	0.5	62
49	The autoimmune disease-associated IL2RA locus is involved in the clinical manifestations of systemic sclerosis. Genes and Immunity, 2012, 13, 191-196.	2.2	23
50	Evaluation of a Shared Autoimmune Disease-associated Polymorphism of TRAF6 in Systemic Sclerosis and Giant Cell Arteritis. Journal of Rheumatology, 2012, 39, 1275-1279.	1.0	3
51	Identification of CSK as a systemic sclerosis genetic risk factor through Genome Wide Association Study follow-up. Human Molecular Genetics, 2012, 21, 2825-2835.	1.4	98
52	Polymorphisms in the Interleukin 4, Interleukin 13, and Corresponding Receptor Genes Are Not Associated with Systemic Sclerosis and Do Not Influence Gene Expression. Journal of Rheumatology, 2012, 39, 112-118.	1.0	8
53	Pattern and Density of Vascularization in Mammalian Testes, Ovaries, and Ovotestes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 170-181.	0.6	9
54	Autoimmune disease-associated CD226 gene variants are not involved in giant cell arteritis susceptibility in the Spanish population. Clinical and Experimental Rheumatology, 2012, 30, S29-33.	0.4	4

#	Article	IF	CITATIONS
55	Role of the CCR5/Δ32CCR5 polymorphism in biopsy-proven giant cell arteritis. Human Immunology, 2011, 72, 458-461.	1.2	9
56	Association of a non-synonymous functional variant of the ITGAM gene with systemic sclerosis. Annals of the Rheumatic Diseases, 2011, 70, 2050-2052.	0.5	15
57	Role of rs1343151 <i>IL23R</i> and rs3790567 <i>IL12RB2</i> Polymorphisms in Biopsy-proven Giant Cell Arteritis. Journal of Rheumatology, 2011, 38, 889-892.	1.0	20
58	A Nonsynonymous Functional Variant of the ITGAM Gene Is Not Involved in Biopsy-proven Giant Cell Arteritis. Journal of Rheumatology, 2011, 38, 2598-2601.	1.0	4
59	Development of the cornea of true moles (Talpidae): morphogenesis and expression of <i>PAX6</i> and cytokeratins. Journal of Anatomy, 2010, 217, 488-500.	0.9	9
60	Retinal development and function in a â€~blind' mole. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1513-1522.	1.2	11
61	SOX9 is not required for the cellular events of testicular organogenesis in XX mole ovotestes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2009, 312B, 734-748.	0.6	9
62	The spatio-temporal pattern of testis organogenesis in mammals - insights from the mole. International Journal of Developmental Biology, 2009, 53, 1035-1044.	0.3	19
63	The molecular basis of defective lens development in the Iberian mole. BMC Biology, 2008, 6, 44.	1.7	14
64	The evolution of female mole ovotestes evidences high plasticity of mammalian gonad development. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2008, 310B, 259-266.	0.6	20
65	Ossification sequence in the mole Talpa occidentalis (Eulipotyphla, Talpidae) and comparison with other mammals. Mammalian Biology, 2008, 73, 399-403.	0.8	12
66	Peritubular Myoid Cells Are Not the Migrating Population Required for Testis Cord Formation in the XY Gonad. Sexual Development, 2008, 2, 128-133.	1.1	96
67	Meiosis Onset Is Postponed to Postnatal Stages during Ovotestis Development in Female Moles. Sexual Development, 2007, 1, 66-76.	1.1	13
68	Histone H2AX phosphorylation is associated with most meiotic events in grasshopper. Cytogenetic and Genome Research, 2007, 116, 311-315.	0.6	16
69	Histone H3 lysine 9 acetylation pattern suggests that X and B chromosomes are silenced during entire male meiosis in a grasshopper. Cytogenetic and Genome Research, 2007, 119, 135-142.	0.6	30
70	Polyunsaturated fatty acids and parasitism: effect of a diet supplemented with fish oil on the course of rat trichinellosis. Veterinary Parasitology, 2003, 117, 85-97.	0.7	10