Kirsten Madsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078769/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Angiotensin II Promotes Development of the Renal Microcirculation through AT1 Receptors. Journal of the American Society of Nephrology: JASN, 2010, 21, 448-459.	6.1	67
2	Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Archiv European Journal of Physiology, 2013, 465, 25-37.	2.8	57
3	Role of the renin–angiotensin system in kidney development and programming of adult blood pressure. Clinical Science, 2020, 134, 641-656.	4.3	44
4	Stimulation of Renin Secretion by Catecholamines Is Dependent on Adenylyl Cyclases 5 and 6. Hypertension, 2011, 57, 460-468.	2.7	37
5	Long-Term Lithium Use and Risk of Renal and Upper Urinary Tract Cancers. Journal of the American Society of Nephrology: JASN, 2016, 27, 249-255.	6.1	34
6	Disruption of cyclooxygenase-2 prevents downregulation of cortical AQP2 and AQP3 in response to bilateral ureteral obstruction in the mouse. American Journal of Physiology - Renal Physiology, 2012, 302, F1430-F1439.	2.7	32
7	Glucocorticoid impairs growth of kidney outer medulla and accelerates loop of Henle differentiation and urinary concentrating capacity in rat kidney development. American Journal of Physiology - Renal Physiology, 2006, 291, F812-F822.	2.7	29
8	Low endogenous glucocorticoid allows induction of kidney cortical cyclooxygenase-2 during postnatal rat development. American Journal of Physiology - Renal Physiology, 2004, 286, F26-F37.	2.7	22
9	Hypotonicity-Induced Renin Exocytosis from Juxtaglomerular Cells Requires Aquaporin-1 and Cyclooxygenase-2. Journal of the American Society of Nephrology: JASN, 2009, 20, 2154-2161.	6.1	22
10	Disruption of cyclooxygenase type 2 exacerbates apoptosis and renal damage during obstructive nephropathy. American Journal of Physiology - Renal Physiology, 2015, 309, F1035-F1048.	2.7	22
11	Inhibition of calcineurin phosphatase promotes exocytosis of renin from juxtaglomerular cells. Kidney International, 2010, 77, 110-117.	5.2	21
12	Interference with Gsα-Coupled Receptor Signaling in Renin-Producing Cells Leads to Renal Endothelial Damage. Journal of the American Society of Nephrology: JASN, 2017, 28, 3479-3489.	6.1	15
13	Natriuretic peptides relax human intrarenal arteries through natriuretic peptide receptor typeâ€A recapitulated by soluble guanylyl cyclase agonists. Acta Physiologica, 2021, 231, e13565.	3.8	15
14	Deletion of cyclooxygenase-2 in the mouse increases arterial blood pressure with no impairment in renal NO production in response to chronic high salt intake. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2013, 304, R899-R907.	1.8	14
15	Lithium induces microcysts and polyuria in adolescent rat kidney independent of cyclooxygenase-2. Physiological Reports, 2014, 2, e00202.	1.7	13
16	Pazopanib-Induced Hypertension in Patients With Renal Cell Carcinoma Is Associated With Low Urine Excretion of NO Metabolites. Hypertension, 2018, 71, 473-480.	2.7	10
17	Proteinuria is accompanied by intratubular complement activation and apical membrane deposition of C3dg and C5b-9 in kidney transplant recipients. American Journal of Physiology - Renal Physiology, 2022, 322, F150-F163.	2.7	9
18	Vascular endothelial growth factor signaling is necessary for expansion of medullary microvessels during postnatal kidney development. American Journal of Physiology - Renal Physiology, 2016, 311, F586-F599.	2.7	8

Kirsten Madsen

#	Article	IF	CITATIONS
19	Early life body size and its associations with adult bladder cancer. Annals of Human Biology, 2020, 47, 166-172.	1.0	4
20	The water channel aquaporin-1 contributes to renin cell recruitment during chronic stimulation of renin production. American Journal of Physiology - Renal Physiology, 2014, 307, F1215-F1226.	2.7	3
21	Increased <scp>COX</scp> â€2 after ureter obstruction attenuates fibrosis and is associated with <scp>EP2</scp> receptor upregulation in mouse and human kidney. Acta Physiologica, 2022, , e13828.	3.8	3
22	Renoprotective effects of cardiotrophinâ€1 in a mouse model of chronic kidney disease. Acta Physiologica, 2019, 226, e13274.	3.8	1
23	Interaction between angiotensin II and the renal prostaglandin system in calcineurin inhibitor induced nephrotoxicity. Acta Physiologica, 2021, 232, e13648.	3.8	1
24	Osmotic stimulation of renin release from single mouse juxtaglomerular cells. FASEB Journal, 2008, 22, 736.8.	0.5	1
25	Renin release is differentially sensitive to clinically used calcineurin inhibitors. FASEB Journal, 2008, 22, 736.5.	0.5	0
26	Increased AQP2 and AQP3 expression in renal cortex in COXâ€2 deficient mice. FASEB Journal, 2008, 22, 1216.1.	0.5	0
27	Patterning of renal medullary vasa recta bundles takes place in a narrow developmental window in rats and humans and is dependent on Angiotensin II AT1 receptors. FASEB Journal, 2015, 29, 796.1.	0.5	0
28	FC 118: The Effect of Spironolactone on Calcineurin Inhibitor Induced Nephrotoxicity—The Spiren Trial. Nephrology Dialysis Transplantation, 2022, 37, .	0.7	0