Isabelle Caldelari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 3′UTRâ€derived sRNA RsaG coordinates redox homeostasis and metabolism adaptation in response to glucoseâ€6â€phosphate uptake in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2022, 117, 193-214.	1.2	15
2	RNase III CLASH in MRSA uncovers sRNA regulatory networks coupling metabolism to toxin expression. Nature Communications, 2022, 13, .	5.8	14
3	RNA thermoswitches modulate <i>Staphylococcus aureus</i> adaptation to ambient temperatures. Nucleic Acids Research, 2021, 49, 3409-3426.	6.5	20
4	Assembling the Current Pieces: The Puzzle of RNA-Mediated Regulation in Staphylococcus aureus. Frontiers in Microbiology, 2021, 12, 706690.	1.5	7
5	The power of cooperation: Experimental and computational approaches in the functional characterization of bacterial sRNAs. Molecular Microbiology, 2020, 113, 603-612.	1.2	27
6	Differential evolution in 3′UTRs leads to specific gene expression in Staphylococcus. Nucleic Acids Research, 2020, 48, 2544-2563.	6.5	19
7	Navigation through the twists and turns of RNA sequencing technologies: Application to bacterial regulatory RNAs. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194506.	0.9	11
8	RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Research, 2019, 47, 9871-9887.	6.5	71
9	A multifaceted small <scp>RNA</scp> modulates gene expression upon glucose limitation in <i>Staphylococcus aureus</i> . EMBO Journal, 2019, 38, .	3.5	44
10	MS2-Affinity Purification Coupled With RNA Sequencing Approach in the Human Pathogen Staphylococcus aureus. Methods in Enzymology, 2018, 612, 393-411.	0.4	11
11	The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms. Nucleic Acids Research, 2017, 45, 6746-6760.	6.5	41
12	Complete Genome Sequence and Annotation of the Staphylococcus aureus Strain HG001. Genome Announcements, 2017, 5, .	0.8	17
13	<i>Staphylococcus aureus</i> RNAIII and Its Regulon Link Quorum Sensing, Stress Responses, Metabolic Adaptation, and Regulation of Virulence Gene Expression. Annual Review of Microbiology, 2016, 70, 299-316.	2.9	153
14	Various checkpoints prevent the synthesis ofStaphylococcus aureuspeptidoglycan hydrolase LytM in the stationary growth phase. RNA Biology, 2016, 13, 427-440.	1.5	8
15	Multiple ways to regulate translation initiation in bacteria: Mechanisms, regulatory circuits, dynamics. Biochimie, 2015, 114, 18-29.	1.3	55
16	A Non-Coding RNA Promotes Bacterial Persistence and Decreases Virulence by Regulating a Regulator in Staphylococcus aureus. PLoS Pathogens, 2014, 10, e1003979.	2.1	110
17	The importance of regulatory RNAs in Staphylococcus aureus. Infection, Genetics and Evolution, 2014, 21, 616-626.	1.0	41
18	Novel aspects of RNA regulation in <i>Staphylococcus aureus</i> . FEBS Letters, 2014, 588, 2523-2529.	1.3	49

ISABELLE CALDELARI

#	Article	IF	CITATIONS
19	In vivo mapping of RNA–RNA interactions in Staphylococcus aureus using the endoribonuclease III. Methods, 2013, 63, 135-143.	1.9	18
20	RNA-Mediated Regulation in Pathogenic Bacteria. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010298-a010298.	2.9	157
21	Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression. PLoS Genetics, 2012, 8, e1002782.	1.5	128
22	Current knowledge on regulatory RNAs and their machineries in <i>Staphylococcus aureus</i> . RNA Biology, 2012, 9, 402-413.	1.5	47