Hrdahiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078609/publications.pdf

Version: 2024-02-01

		1307366	1281743
12	125	7	11
papers	citations	h-index	g-index
13	13	13	100
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Truxene π-Expanded BODIPY Star-Shaped Molecules as Acceptors for Non-Fullerene Solar Cells with over 13% Efficiency. ACS Applied Energy Materials, 2022, 5, 2279-2289.	2.5	23
2	Energy-level modulation of coumarin-based molecular donors for efficient all small molecule fullerene-free organic solar cells. Journal of Materials Chemistry A, 2021, 9, 1563-1573.	5.2	18
3	Highly Efficient (15.08%) All-Small-Molecule Ternary Solar Cells Constructed with a Porphyrin as a Donor and Two Acceptors. ACS Applied Energy Materials, 2021, 4, 4498-4506.	2.5	18
4	A ternary organic solar cell with 15.6% efficiency containing a new DPP-based acceptor. Journal of Materials Chemistry C, 2021, 9, 16272-16281.	2.7	17
5	Indole-based A–DA′D–A type acceptor-based organic solar cells achieve efficiency over 15 % with low energy loss. Sustainable Energy and Fuels, 2020, 4, 6203-6211.	2.5	8
6	A–DA′D–A Nonfullerene Acceptor Obtained by Fine-Tuning Side Chains on Pyrroles Enables PBDB-T-Based Organic Solar Cells with over 14% Efficiency. ACS Applied Energy Materials, 2020, 3, 11981-11991.	2.5	8
7	Tetraperylenediimide derivative as a fullerene-free acceptor for a high-performance polymer solar cell with the high-power conversion efficiency of 10.32% with open-circuit voltage over 1.0V . Optical Materials, $2021,115,111048$.	1.7	7
8	Wide bandgap D-A copolymers with same medium dithieno [2,3-e;3′2′-g]isoindole-7,9 (8H) acceptor and different donors for high-performance fullerene free polymer solar cells with efficiency up to 14.76%. Chemical Engineering Journal, 2022, 427, 131404.	6.6	7
9	Ternary Polymer Solar Cells with High Open Circuit Voltage containing Fullerene and New Thieno[3',2',6,7][1]Benzothieno[3,2â€b]Thieno[3,2â€g][1]Benzothiopheneâ€based Nonâ€fullerene Small Molect Acceptor. Energy Technology, 2021, 9, 2001100.	ule8	6
10	New Dithiazole Side Chain Benzodithiophene Containing D–A Copolymers for Highly Efficient Nonfullerene Solar Cells. Macromolecular Chemistry and Physics, 2021, 222, 2100053.	1.1	6
11	Efficient Ternary Polymer Solar Cells Employing Well Matched Medium Band Gap and Narrow Band Gap Nonfullerene Acceptors. ACS Applied Energy Materials, 2022, 5, 7813-7821.	2.5	5
12	Ternary Polymer Solar Cells Using Two Polymers P1 and P3 with Similar Chemical Structures and Nonfullerene Acceptor Attained Power Conversion Efficiency Over 15.5% with Low Energy Loss of 0.55 eV. Energy Technology, 2021, 9, 2000926.	1.8	2