
Timor Baasov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078601/publications.pdf Version: 2024-02-01

TIMOR RAASON

#	Article	IF	CITATIONS
1	Toward Catalytic Antibiotics: Redesign of Fluoroquinolones to Catalytically Fragment Chromosomal DNA. ACS Infectious Diseases, 2021, 7, 608-623.	3.8	5
2	Cross-utilization of β-galactosides and cellobiose in Geobacillus stearothermophilus. Journal of Biological Chemistry, 2020, 295, 10766-10780.	3.4	2
3	Towards Catalytic Antibiotics: Redesign of Aminoglycosides To Catalytically Disable Bacterial Ribosomes. ChemBioChem, 2019, 20, 247-259.	2.6	7
4	Exploring eukaryotic <i>versus</i> prokaryotic ribosomal RNA recognition with aminoglycoside derivatives. MedChemComm, 2018, 9, 503-508.	3.4	7
5	Characterization of new-generation aminoglycoside promoting premature termination codon readthrough in cancer cells. RNA Biology, 2017, 14, 378-388.	3.1	74
6	Covalently linked kanamycin – Ciprofloxacin hybrid antibiotics as a tool to fight bacterial resistance. Bioorganic and Medicinal Chemistry, 2017, 25, 2917-2925.	3.0	42
7	Design of Novel Aminoglycoside Derivatives with Enhanced Suppression of Diseases-Causing Nonsense Mutations. ACS Medicinal Chemistry Letters, 2016, 7, 418-423.	2.8	32
8	Targeting Nonsense Mutations in Diseases with Translational Read-Through-Inducing Drugs (TRIDs). BioDrugs, 2016, 30, 49-74.	4.6	82
9	New inducible genetic method reveals critical roles of GABA in the control of feeding and metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3645-3650.	7.1	53
10	A Hybrid Drug Limits Resistance by Evading the Action of the Multiple Antibiotic Resistance Pathway. Molecular Biology and Evolution, 2016, 33, 492-500.	8.9	24
11	Structural basis for selective targeting of leishmanial ribosomes: aminoglycoside derivatives as promising therapeutics. Nucleic Acids Research, 2015, 43, 8601-8613.	14.5	28
12	Carbohydrates:Special Issue in Honor of the 2014 Wolf Prize Laureate in Chemistry, Professor Chi-Huey Wong. Israel Journal of Chemistry, 2015, 55, 253-253.	2.3	0
13	Preliminary crystallographic analysis of Xyn52B2, a GH52 β-‹scp>D‹/scp>-xylosidase from <i>Geobacillus stearothermophilus</i> T6. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 1675-1682.	0.8	3
14	Designer Aminoglycosides That Selectively Inhibit Cytoplasmic Rather than Mitochondrial Ribosomes Show Decreased Ototoxicity. Journal of Biological Chemistry, 2014, 289, 2318-2330.	3.4	97
15	Therapy Strategies for Usher Syndrome Type 1C in the Retina. Advances in Experimental Medicine and Biology, 2014, 801, 741-747.	1.6	11
16	Synthetic Aminoglycosides Efficiently Suppress Cystic Fibrosis Transmembrane Conductance Regulator Nonsense Mutations and Are Enhanced by Ivacaftor. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 805-816.	2.9	131
17	Long-term nonsense suppression therapy with NB84 moderates MPS IH disease progression. Molecular Genetics and Metabolism, 2014, 111, S50.	1.1	2
18	When proteins start to make sense: fine-tuning of aminoglycosides for PTC suppression therapy. MedChemComm, 2014, 5, 1092-1105.	3.4	40

#	Article	IF	CITATIONS
19	Carbohydrates themed issue. MedChemComm, 2014, 5, 1010-1013.	3.4	О
20	Long-term nonsense suppression therapy moderates MPS I-H disease progression. Molecular Genetics and Metabolism, 2014, 111, 374-381.	1.1	44
21	Foreword—The 17th European Carbohydrate Symposium—EuroCarb17. Carbohydrate Research, 2014, 389, 1.	2.3	0
22	Development of generic immunoassay for the detection of a series of aminoglycosides with 6â€2-OH group for the treatment of genetic diseases in biological samples. Journal of Pharmaceutical and Biomedical Analysis, 2013, 75, 33-40.	2.8	15
23	Attenuation of Nonsense-Mediated mRNA Decay Enhances In Vivo Nonsense Suppression. PLoS ONE, 2013, 8, e60478.	2.5	89
24	Aminoglycoside-Induced Premature Stop Codon Read-Through of Mucopolysaccharidosis Type I Patient Q70X and W402X Mutations in Cultured Cells. JIMD Reports, 2013, 13, 139-147.	1.5	16
25	Identification of the molecular attributes required for aminoglycoside activity against <i>Leishmania</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13333-13338.	7.1	31
26	A comparative evaluation of NB30, NB54 and PTC124 in translational readâ€ŧhrough efficacy for treatment of an <i>USH1C</i> nonsense mutation. EMBO Molecular Medicine, 2012, 4, 1186-1199.	6.9	95
27	Increased Selectivity toward Cytoplasmic versus Mitochondrial Ribosome Confers Improved Efficiency of Synthetic Aminoglycosides in Fixing Damaged Genes: A Strategy for Treatment of Genetic Diseases Caused by Nonsense Mutations. Journal of Medicinal Chemistry, 2012, 55, 10630-10643.	6.4	57
28	The designer aminoglycoside NB84 significantly reduces glycosaminoglycan accumulation associated with MPS I-H in the Idua-W392X mouse. Molecular Genetics and Metabolism, 2012, 105, 116-125.	1.1	67
29	Repairing faulty genes by aminoglycosides: Identification of new pharmacophore with enhanced suppression of disease-causing nonsense mutations. MedChemComm, 2011, 2, 165.	3.4	21
30	Ex Vivo Treatment with a Novel Synthetic Aminoglycoside NB54 in Primary Fibroblasts from Rett Syndrome Patients Suppresses MECP2 Nonsense Mutations. PLoS ONE, 2011, 6, e20733.	2.5	46
31	Readthrough of nonsense mutations in Rett syndrome: evaluation of novel aminoglycosides and generation of a new mouse model. Journal of Molecular Medicine, 2011, 89, 389-398.	3.9	90
32	Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54. Journal of Molecular Medicine, 2011, 89, 1149-1161.	3.9	67
33	Post-transcriptionally Regulated Expression System in Human Xenogeneic Transplantation Models. Molecular Therapy, 2011, 19, 1645-1655.	8.2	7
34	Repairing faulty genes by aminoglycosides: Development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorganic and Medicinal Chemistry, 2010, 18, 3735-3746.	3.0	118
35	Beneficial Read-Through of a <i>USH1C</i> Nonsense Mutation by Designed Aminoglycoside NB30 in the Retina. , 2010, 51, 6671.		50
36	Dual-acting hybrid antibiotics: a promising strategy to combat bacterial resistance. Expert Opinion on Drug Discovery, 2010, 5, 883-902.	5.0	92

#	Article	IF	CITATIONS
37	Aminoglycosides. Methods in Enzymology, 2010, 478, 437-462.	1.0	24
38	Development of Novel Aminoglycoside (NB54) with Reduced Toxicity and Enhanced Suppression of Disease-Causing Premature Stop Mutations. Journal of Medicinal Chemistry, 2009, 52, 2836-2845.	6.4	169
39	Design, Synthesis, and Evaluation of Novel Fluoroquinoloneâ^'Aminoglycoside Hybrid Antibiotics. Journal of Medicinal Chemistry, 2009, 52, 2243-2254.	6.4	131
40	Combined Chemicalâ€Enzymatic Assembly of Aminoglycoside Derivatives with Nâ€1â€AHB Side Chain. Advanced Synthesis and Catalysis, 2008, 350, 1682-1688.	4.3	8
41	Structure–toxicity relationship of aminoglycosides: Correlation of 2′-amine basicity with acute toxicity in pseudo-disaccharide scaffolds. Bioorganic and Medicinal Chemistry, 2008, 16, 8940-8951.	3.0	22
42	Designer aminoglycosides: the race to develop improved antibiotics and compounds for the treatment of human genetic diseases. Organic and Biomolecular Chemistry, 2008, 6, 227-239.	2.8	104
43	Aminoglycosides Affect Intracellular <i>Salmonella enterica</i> Serovars Typhimurium and Virchow. Antimicrobial Agents and Chemotherapy, 2008, 52, 920-926.	3.2	44
44	Overexpression and Initial Characterization of the Chromosomal Aminoglycoside 3â€2- O -Phosphotransferase APH(3â€2)-IIb from Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2007, 51, 774-776.	3.2	15
45	Differential Selectivity of Natural and Synthetic Aminoglycosides towards the Eukaryotic and Prokaryotic Decoding A Sites. ChemBioChem, 2007, 8, 1700-1709.	2.6	56
46	In vitro and ex vivo suppression by aminoglycosides of PCDH15 nonsense mutations underlying type 1 Usher syndrome. Human Genetics, 2007, 122, 373-381.	3.8	65
47	Redesign of aminoglycosides for treatment of human genetic diseases caused by premature stop mutations. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 6310-6315.	2.2	71
48	Branched aminoglycosides: Biochemical studies and antibacterial activity of neomycin B derivatives. Bioorganic and Medicinal Chemistry, 2005, 13, 5797-5807.	3.0	37
49	Dual Effect of Synthetic Aminoglycosides: Antibacterial Activity againstBacillus anthracis and Inhibition of Anthrax Lethal Factor. Angewandte Chemie - International Edition, 2005, 44, 447-452.	13.8	63
50	Biochemical Characterization and Identification of the Catalytic Residues of a Family 43 β-d-Xylosidase fromGeobacillus stearothermophilusT-6â€. Biochemistry, 2005, 44, 387-397.	2.5	93
51	The Use of (E)- and (Z)-Phosphoenol-3-fluoropyruvate as Mechanistic Probes Reveals Significant Differences between the Active Sites of KDO8P and DAHP Synthasesâ€. Biochemistry, 2005, 44, 7326-7335.	2.5	8
52	Crystal Structures of Escherichia coli KDO8P Synthase Complexes Reveal the Source of Catalytic Irreversibility. Journal of Molecular Biology, 2005, 351, 641-652.	4.2	14
53	Crystal Structures of Geobacillus stearothermophilus α-Glucuronidase Complexed with Its Substrate and Products. Journal of Biological Chemistry, 2004, 279, 3014-3024.	3.4	62
54	A Reciprocal Single Mutation Affects the Metal Requirement of 3-Deoxy-d-manno-2-octulosonate-8-phosphate (KDO8P) Synthases from Aquifex pyrophilus and Escherichia coli. Journal of Biological Chemistry, 2004, 279, 45110-45120.	3.4	27

#	Article	IF	CITATIONS
55	Synthesis and evaluation of a mechanism-based inhibitor of KDO8P synthase. Carbohydrate Research, 2004, 339, 385-392.	2.3	29
56	Crystal structure and snapshots along the reaction pathway of a family 51 Â-L-arabinofuranosidase. EMBO Journal, 2003, 22, 4922-4932.	7.8	127
57	Cloning, expression, and biochemical characterization of 3-deoxy-d- manno -2-octulosonate-8-phosphate (KDO8P) synthase from the hyperthermophilic bacterium Aquifex pyrophilus. Extremophiles, 2003, 7, 471-481.	2.3	13
58	Binding of the natural substrates and products to KDO8P synthase: 31P and 13C solution NMR characterization. Bioorganic Chemistry, 2003, 31, 306-321.	4.1	5
59	Crystallization and preliminary X-ray analysis of a family 51 glycoside hydrolase, the α-L-arabinofuranosidase fromGeobacillus stearothermophilusT-6. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 913-915.	2.5	12
60	Detailed Kinetic Analysis of a Family 52 Glycoside Hydrolase:  A β-Xylosidase from Geobacillus stearothermophilus. Biochemistry, 2003, 42, 10528-10536.	2.5	54
61	Biotransformations of propenylbenzenes by an Arthrobacter sp. and its t-anethole blocked mutants. Journal of Biotechnology, 2003, 105, 61-70.	3.8	43
62	A New Class of Branched Aminoglycosides:  Pseudo-Pentasaccharide Derivatives of Neomycin B. Organic Letters, 2003, 5, 3575-3578.	4.6	56
63	A Snapshot of Enzyme Catalysis Using Electrospray Ionization Mass Spectrometry. Journal of the American Chemical Society, 2003, 125, 9938-9939.	13.7	64
64	Inhibition Mode of a Bisubstrate Inhibitor of KDO8P Synthase:  A Frequency-Selective REDOR Solid-State and Solution NMR Characterization. Journal of the American Chemical Society, 2003, 125, 4662-4669.	13.7	33
65	Identification of the Catalytic Residues in Family 52 Glycoside Hydrolase, a β-Xylosidase from Geobacillus stearothermophilus T-6. Journal of Biological Chemistry, 2003, 278, 26742-26749.	3.4	53
66	The trans-Anethole Degradation Pathway in an Arthrobacter sp Journal of Biological Chemistry, 2002, 277, 11866-11872.	3.4	34
67	Detailed Kinetic Analysis and Identification of the Nucleophile in α-l-Arabinofuranosidase from Geobacillus stearothermophilus T-6, a Family 51 Glycoside Hydrolase. Journal of Biological Chemistry, 2002, 277, 43667-43673.	3.4	83
68	One-Pot Synthesis of Glucosamine Oligosaccharides. Organic Letters, 2002, 4, 281-283.	4.6	62
69	The identification of the acid-base catalyst of α-arabinofuranosidase fromGeobacillus stearothermophilusT-6, a family 51 glycoside hydrolase. FEBS Letters, 2002, 514, 163-167.	2.8	72
70	Methyl 2,3-dideoxy-2-S-methylmercurio-2-thio-β-D-manno-oct-2-ulopyranosonate-(2,6). Acta Crystallographica Section C: Crystal Structure Communications, 2002, 58, m450-m452.	0.4	1
71	Stereochemistry of family 52 glycosyl hydrolases: a β-xylosidase fromBacillus stearothermophilusT-6 is a retaining enzyme. FEBS Letters, 2001, 495, 39-43.	2.8	41
72	Glutamic acid 160 is the acid-base catalyst of β-xylosidase fromBacillus stearothermophilusT-6: a family 39 glycoside hydrolase. FEBS Letters, 2001, 495, 115-119.	2.8	36

#	Article	IF	CITATIONS
73	A Synthetic Pentasaccharide with GTPase Activity. Organic Letters, 2001, 3, 4311-4314.	4.6	19
74	Crystal Structures of KDOP Synthase in Its Binary Complexes with the Substrate Phosphoenolpyruvate and with a Mechanism-Based Inhibitorâ€,‡. Biochemistry, 2001, 40, 6326-6334.	2.5	50
75	Biochemical characterization and identification of catalytic residues in α-glucuronidase from Bacillus stearothermophilus T-6. FEBS Journal, 2001, 268, 3006-3016.	0.2	51
76	Catalytic Mechanism of 3-Deoxy-D-manno-2-octulosonate-8-phosphate Synthase. Current Organic Chemistry, 2001, 5, 127-138.	1.6	7
77	Towards a new class of synthetic antibacterials acting on lipopolysaccharide biosynthesis. Drug Development Research, 2000, 50, 416-424.	2.9	8
78	Direct Identification of Enzyme Active Site Residues by Solid-State REDOR NMR:  Application to KDO8P Synthase. Journal of the American Chemical Society, 2000, 122, 2649-2650.	13.7	15
79	Structural and Mechanistic Investigation of 3-Deoxy-d-manno-octulosonate-8-phosphate Synthase by Solid-State REDOR NMR. Biochemistry, 2000, 39, 14865-14876.	2.5	24
80	Family of thiomercuric derivatives of sugars: Synthesis, fungicidal/herbicidal activity, and application to the X-ray structure determination of the corresponding enzymes. Israel Journal of Chemistry, 2000, 40, 177-188.	2.3	8
81	Overproduction and characterization of seleno-methionine xylanase T-6. Journal of Biotechnology, 2000, 78, 83-86.	3.8	26
82	Towards the development of novel antibiotics: synthesis and evaluation of a mechanism-based inhibitor of Kdo8P synthase. Bioorganic and Medicinal Chemistry, 1999, 7, 2671-2682.	3.0	49
83	Programmable One-Pot Oligosaccharide Synthesis. Journal of the American Chemical Society, 1999, 121, 734-753.	13.7	817
84	Catalytic Mechanism of Kdo8P Synthase:Â Transient Kinetic Studies and Evaluation of a Putative Reaction Intermediateâ€. Biochemistry, 1998, 37, 16390-16399.	2.5	48
85	First Nonenzymatic Synthesis of Kdo8P through a Mechanism Similar to That Suggested for the Enzyme Kdo8P Synthase. Journal of Organic Chemistry, 1997, 62, 794-804.	3.2	11
86	Catalytic mechanism of KDO8P synthase: synthesis and evaluation of a putative reaction intermediate. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2457-2462.	2.2	15
87	Synthesis and evaluation of putative oxocarbenium intermediate mimic in the KDO8P synthase-catalyzed reaction as a tool for the design of potent inhibitors for lipopolysaccharide biosynthesis. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2469-2472.	2.2	17
88	Catalytic mechanism of KDO8P synthase. Pre-steady-state kinetic analysis using rapid chemical quench flow methods. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 2463-2468.	2.2	17
89	An efficient chemical-enzymatic synthesis of 4-nitrophenyl β-xylobioside: a chromogenic substrate for xylanases. Carbohydrate Research, 1997, 304, 111-115.	2.3	28
90	A new model for the stereoselective construction of the Kdo structure through a mechanism similar to that suggested for the enzyme Kdo8P synthase. Tetrahedron Letters, 1996, 37, 3545-3548.	1.4	4

#	Article	IF	CITATIONS
91	1-(Dihydroxyphosphynyl)vinyl phosphate: The phosphonate analogue of phosphoenolpyruvate is a pH-dependent substrate of Kdo8P synthase. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2901-2906.	2.2	12
92	Synthesis, Inhibition, and Acid-Catalyzed Hydrolysis Studies of Model Compounds of the Proposed Intermediate in the Kdo8P-Synthase-Catalyzed Reaction. Journal of the American Chemical Society, 1995, 117, 6165-6174.	13.7	37
93	Synthesis of novel phosphonate analogue of Kdo as a tool for the design of potent inhibitors for lipopolysaccharide biosynthesis. Tetrahedron Letters, 1994, 35, 5077-5080.	1.4	8
94	Towards the synthesis of the putative reaction intermediate in the Kdo8P synthase-catalyzed reaction. Synthesis and evaluation of 3-deoxy-manno-2-octulosonate-2-phosphate. Tetrahedron Letters, 1994, 35, 3179-3182.	1.4	9
95	Stereochemistry of the KDO8P synthase. An efficient synthesis of the 3-fluoro analogues of KDO8P. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1577-1582.	2.2	61
96	Insight into the catalytic mechanism of KDO8P synthase. Synthesis and evaluation of the isosteric phosphonate mimic of the putative cyclic intermediate. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1583-1588.	2.2	32
97	A combined chemical-enzymatic synthesis of a new phosphoramidate analogue of phosphoenolpyruvate. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 1615-1618.	2.2	5
98	Catalytic mechanism of 3-deoxy-d-manno-2-octulosonate-8-phosphate synthase. The use of synthetic analogues to probe the structure of the putative reaction intermediate. FEBS Journal, 1993, 217, 991-999.	0.2	44
99	Mechanistic studies of 3-deoxy-d-manno-2-octulosonate-8-phosphate synthase from Escherichia coli. FEBS Journal, 1992, 208, 443-449.	0.2	52
100	Anomeric specificity of 3-deoxy-D-manno-2-octulosonate 8-phosphate phosphatase from Escherichia coli. Journal of the American Chemical Society, 1990, 112, 4972-4974.	13.7	13
101	Factors affecting the C:N stretching in protonated retinal Schiff base: a model study for bacteriorhodopsin and visual pigments. Biochemistry, 1987, 26, 3210-3217.	2.5	166
102	Probing the binding site of bacteriorhodopsin with a fluorescent chromophore. Journal of the American Chemical Society, 1987, 109, 1594-1596.	13.7	18
103	Interactions between protonated retinal schiff base and various counter ions: A study by two-dimensional NOE NMR spectroscopy. Magnetic Resonance in Chemistry, 1987, 25, 21-24.	1.9	1
104	Alteration of pKa of the bacteriorhodopsin protonated Schiff base. A study with model compounds. Biochemistry, 1986, 25, 5249-5258.	2.5	90
105	On the Absorption Maxima of Protonated Retinal Schiff Bases. An Interaction with External Charges. Israel Journal of Chemistry, 1985, 25, 53-55.	2.3	4
106	Model compounds for the study of spectroscopic properties of visual pigments and bacteriorhodopsin. Journal of the American Chemical Society, 1985, 107, 7524-7533.	13.7	77
107	CC Stretching Frequencies in Model Compounds of the Protonated Retinal Schiff Base. Angewandte Chemie International Edition in English, 1984, 23, 803-804.	4.4	5
108	C=C‧treckschwingungsfrequenzen in Modellverbindungen der Protonierten Schiffâ€Base des Retinals. Angewandte Chemie, 1984, 96, 786-787.	2.0	3

#	Article	IF	CITATIONS
109	Factors affecting the rate of thermal isomerization of 13-cis-bacteriorhodopsin to all trans. Journal of the American Chemical Society, 1984, 106, 6840-6841.	13.7	30
110	On the binding site of bacteriorhodopsin. A study with artificial pigments. Journal of the American Chemical Society, 1984, 106, 2435-2437.	13.7	27
111	A blue shift of protonated retinal schiff base. A model study for bacteriorhodopsin. Tetrahedron Letters, 1983, 24, 1745-1748.	1.4	8
112	A remarkable blue shift of retinal protonated Schiff base due to electrostatic interaction of positive charges. Journal of the Chemical Society Chemical Communications, 1983, , 77.	2.0	3
113	Photochemistry of thioanhydrides. Photofragmentation of -1,2-dihydrophthalic thioanhydrides. Tetrahedron Letters, 1982, 23, 1373-1376.	1.4	6