

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078538/publications.pdf Version: 2024-02-01

Ville Lii

#	Article	IF	CITATIONS
1	A Route Map for Successful Applications of Geographically Weighted Regression. Geographical Analysis, 2023, 55, 155-178.	1.9	45
2	Determining critical thresholds of ecological restoration based on ecosystem service index: A case study in the Pingjiang catchment in southern China. Journal of Environmental Management, 2022, 303, 114220.	3.8	26
3	Short-Term Grazing Exclusion Alters Soil Bacterial Co-occurrence Patterns Rather Than Community Diversity or Composition in Temperate Grasslands. Frontiers in Microbiology, 2022, 13, 824192.	1.5	6
4	Spatiotemporal Variations in Grassland Vulnerability on the Qinghai-Tibet Plateau Based on a Comprehensive Framework. Sustainability, 2022, 14, 4912.	1.6	1
5	Identifying ecological security patterns based on the supply, demand and sensitivity of ecosystem service: A case study in the Yellow River Basin, China. Journal of Environmental Management, 2022, 315, 115158.	3.8	68
6	The Forgotten Semantics of Regression Modeling in Geography. Geographical Analysis, 2021, 53, 113-134.	1.9	2
7	Multi-scale analyses on the ecosystem services in the Chinese Loess Plateau and implications for dryland sustainability. Current Opinion in Environmental Sustainability, 2021, 48, 1-9.	3.1	32
8	Integrating vegetation suitability in sustainable revegetation for the Loess Plateau, China. Science of the Total Environment, 2021, 759, 143572.	3.9	30
9	Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sensing, 2021, 13, 1299.	1.8	31
10	Quantifying the Variability of Forest Ecosystem Vulnerability in the Largest Water Tower Region Globally. International Journal of Environmental Research and Public Health, 2021, 18, 7529.	1.2	6
11	Geodiversity underpins biodiversity but the relations can be complex: Implications from two biodiversity proxies. Global Ecology and Conservation, 2021, 31, e01830.	1.0	15
12	Spatiotemporal variability of water ecosystem services can be effectively quantified by a composite indicator approach. Ecological Indicators, 2021, 130, 108061.	2.6	6
13	A holistic framework for facilitating environmental and human health. Geography and Sustainability, 2021, 2, 298-303.	1.9	1
14	Estimation of Global Grassland Net Ecosystem Carbon Exchange Using a Model Tree Ensemble Approach. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005034.	1.3	16
15	Rapid Urbanization and Agricultural Intensification Increase Regional Evaporative Water Consumption of the Loess Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033380.	1.2	16
16	Assessing Impacts of Land Use/Land Cover Conversion on Changes in Ecosystem Services Value on the Loess Plateau, China. Sustainability, 2020, 12, 7128.	1.6	21
17	An effective accuracy assessment indicator for credible land use change modelling: Insights from hypothetical and real landscape analyses. Ecological Indicators, 2020, 117, 106552.	2.6	6
18	Ecosystem service value of the Qinghai-Tibet Plateau significantly increased during 25Âyears. Ecosystem Services, 2020, 44, 101146.	2.3	107

#	Article	IF	CITATIONS
19	Effects of different functional structure parameters of plant communities on slope runoff in different periods of the year in semiarid grasslands. Science of the Total Environment, 2020, 713, 136705.	3.9	9
20	Driving Factors of Land Change in China's Loess Plateau: Quantification Using Geographically Weighted Regression and Management Implications. Remote Sensing, 2020, 12, 453.	1.8	39
21	Scale and landscape features matter for understanding the performance of large payments for ecosystem services. Landscape and Urban Planning, 2020, 197, 103764.	3.4	12
22	Spatiotemporal scale and integrative methods matter for quantifying the driving forces of land cover change. Science of the Total Environment, 2020, 739, 139622.	3.9	25
23	Mapping critical natural capital at a regional scale: spatiotemporal variations and the effectiveness of priority conservation. Environmental Research Letters, 2020, 15, 124025.	2.2	12
24	Soil Hydrothermal Characteristics among Three Typical Vegetation Types: An Eco-Hydrological Analysis in the Qilian Mountains, China. Water (Switzerland), 2019, 11, 1277.	1.2	3
25	A conceptual model for a process-oriented landscape pattern analysis. Science China Earth Sciences, 2019, 62, 2050-2057.	2.3	27
26	Spatio-temporal characteristics and driving forces of landscape structure changes in the middle reach of the Heihe River Basin from 1990 to 2015. Landscape Ecology, 2019, 34, 755-770.	1.9	18
27	Ecosystem restoration in Europe: Can analogies to Traditional Chinese Medicine facilitate the cross-policy harmonization on managing socio-ecological systems?. Science of the Total Environment, 2019, 657, 1553-1567.	3.9	12
28	Quantifying the spatio-temporal drivers of planned vegetation restoration on ecosystem services at a regional scale. Science of the Total Environment, 2019, 650, 1029-1040.	3.9	115
29	The synergistic effects of afforestation and the construction of checkâ€dams on sediment trapping: Four decades of evolution on the Loess Plateau, China. Land Degradation and Development, 2019, 30, 622-635.	1.8	22
30	Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Science Reviews, 2019, 190, 398-415.	4.0	108
31	A framework for the regional critical zone classification: the case of the Chinese Loess Plateau. National Science Review, 2019, 6, 14-18.	4.6	20
32	Bundling ecosystem services for detecting their interactions driven by large-scale vegetation restoration: enhanced services while depressed synergies. Ecological Indicators, 2019, 99, 332-342.	2.6	60
33	Half century change of interactions among ecosystem services driven by ecological restoration: Quantification and policy implications at a watershed scale in the Chinese Loess Plateau. Science of the Total Environment, 2019, 651, 2546-2557.	3.9	96
34	When multi-functional landscape meets Critical Zone science: advancing multi-disciplinary research for sustainable human well-being. National Science Review, 2019, 6, 349-358.	4.6	13
35	Peri-urbanization may vary with vegetation restoration: A large scale regional analysis. Urban Forestry and Urban Greening, 2018, 29, 77-87.	2.3	31
36	The effects of restoration on vegetation trends: spatiotemporal variability and influencing factors. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2018, 109, 473-481.	0.3	9

#	Article	IF	CITATIONS
37	A Modified Change Vector Approach for Quantifying Land Cover Change. Remote Sensing, 2018, 10, 1578.	1.8	19
38	Representation of critical natural capital in China. Conservation Biology, 2017, 31, 894-902.	2.4	41
39	Biodiversity and Ecosystem Functional Enhancement by Forest Restoration: A Metaâ€analysis in China. Land Degradation and Development, 2017, 28, 2062-2073.	1.8	32
40	Evaluation of AMSR-E retrieval by detecting soil moisture decrease following massive dryland re-vegetation in the Loess Plateau, China. Remote Sensing of Environment, 2017, 196, 253-264.	4.6	64
41	Temporal variation and spatial scale dependency of ecosystem service interactions: a case study on the central Loess Plateau of China. Landscape Ecology, 2017, 32, 1201-1217.	1.9	100
42	Grassland gross carbon dioxide uptake based on an improved model tree ensemble approach considering human interventions: global estimation and covariation with climate. Global Change Biology, 2017, 23, 2720-2742.	4.2	24
43	Exploring the effects of the "Grain for Green―program on the differences in soil water in the semi-arid Loess Plateau of China. Ecological Engineering, 2017, 107, 144-151.	1.6	45
44	Fledging Critical Zone Science for Environmental Sustainability. Environmental Science & Technology, 2017, 51, 8209-8211.	4.6	11
45	Gauging policy-driven large-scale vegetation restoration programmes under a changing environment: Their effectiveness and socio-economic relationships. Science of the Total Environment, 2017, 607-608, 911-919.	3.9	48
46	Quantifying the effect of ecological restoration on runoff and sediment yields. Progress in Physical Geography, 2017, 41, 753-774.	1.4	55
47	River flow is critical for vegetation dynamics: Lessons from multi-scale analysis in a hyper-arid endorheic basin. Science of the Total Environment, 2017, 603-604, 290-298.	3.9	32
48	Uncertainties of Two Methods in Selecting Priority Areas for Protecting Soil Conservation Service at Regional Scale. Sustainability, 2017, 9, 1577.	1.6	4
49	Analysis of the Driving Forces in Vegetation Variation in the Grain for Green Program Region, China. Sustainability, 2017, 9, 1853.	1.6	19
50	Vegetation changes in recent large-scale ecological restoration projects and subsequent impact on water resources in China's Loess Plateau. Science of the Total Environment, 2016, 569-570, 1032-1039.	3.9	218
51	Revegetation in China's Loess Plateau is approaching sustainable water resource limits. Nature Climate Change, 2016, 6, 1019-1022.	8.1	1,270
52	Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: A meta-analysis. Ecological Engineering, 2016, 95, 542-550.	1.6	93
53	Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: Herb-chronology based analysis. Scientific Reports, 2016, 6, 28435.	1.6	8
54	The role of climatic and anthropogenic stresses on long-term runoff reduction from the Loess Plateau, China. Science of the Total Environment, 2016, 571, 688-698.	3.9	75

#	Article	IF	CITATIONS
55	Multi-scale variability of soil carbon and nitrogen in the middle reaches of the Heihe River basin, northwestern China. Catena, 2016, 137, 328-339.	2.2	12
56	Reduced sediment transport in the Yellow River due to anthropogenic changes. Nature Geoscience, 2016, 9, 38-41.	5.4	948
57	How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale. Landscape Ecology, 2015, 30, 501-516.	1.9	43
58	Land Degradation Research: The Need for a Broader Focus. Environmental Science & Technology, 2015, 49, 689-690.	4.6	3
59	Managing landscape heterogeneity in different socio-ecological contexts: contrasting cases from central Loess Plateau of China and southern Finland. Landscape Ecology, 2015, 30, 463-475.	1.9	13
60	Balancing multiple ecosystem services in conservation priority setting. Landscape Ecology, 2015, 30, 535-546.	1.9	95
61	Recent ecological transitions in China: greening, browning and influential factors. Scientific Reports, 2015, 5, 8732.	1.6	189
62	Soil moisture dynamics of typical ecosystems in response to precipitation: A monitoring-based analysis of hydrological service in the Qilian Mountains. Catena, 2015, 129, 63-75.	2.2	51
63	SAORES: a spatially explicit assessment and optimization tool for regional ecosystem services. Landscape Ecology, 2015, 30, 547-560.	1.9	63
64	Sap flow and water use sources of shelterâ€belt trees in an arid inland river basin of Northwest China. Ecohydrology, 2015, 8, 1446-1458.	1.1	33
65	Carbon Sequestration Function of Check-Dams: A Case Study of the Loess Plateau in China. Ambio, 2014, 43, 926-931.	2.8	32
66	Poverty reduction, environmental protection and ecosystem services: A prospective theory for sustainable development. Chinese Geographical Science, 2014, 24, 83-92.	1.2	23
67	Effects of Land Use Change on Soil Carbon Storage and Water Consumption in an Oasis-Desert Ecotone. Environmental Management, 2014, 53, 1066-1076.	1.2	22
68	Spatial heterogeneous response of land use and landscape functions to ecological restoration: the case of the Chinese loess hilly region. Environmental Earth Sciences, 2014, 72, 2683-2696.	1.3	18
69	Spatial explicit soil moisture analysis: pattern and its stability at small catchment scale in the loess hilly region of China. Hydrological Processes, 2014, 28, 4091-4109.	1.1	19
70	Soil Carbon and Nitrogen Changes following Afforestation of Marginal Cropland across a Precipitation Gradient in Loess Plateau of China. PLoS ONE, 2014, 9, e85426.	1.1	34
71	Linking vegetation cover patterns to hydrological responses using two process-based pattern indices at the plot scale. Science China Earth Sciences, 2013, 56, 1888-1898.	2.3	19
72	Scaling effects of landscape metrics: a comparison of two methods. Physical Geography, 2013, 34, 40-49.	0.6	19

#	Article	IF	CITATIONS
73	Effects of retired steepland afforestation on soil properties: A case study in the Loess Plateau of China. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, , 1-9.	0.3	4
74	Ecosystem Service: From Virtual Reality to Ground Truth. Environmental Science & Technology, 2012, 46, 2492-2493.	4.6	12
75	Carbon retention by check dams: Regional scale estimation. Ecological Engineering, 2012, 44, 139-146.	1.6	54
76	The multi-scale spatial variance of soil moisture in the semi-arid Loess Plateau of China. Journal of Soils and Sediments, 2012, 12, 694-703.	1.5	58
77	Ecosystem management based on ecosystem services and human activities: a case study in the Yanhe watershed. Sustainability Science, 2012, 7, 17-32.	2.5	60
78	A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China. PLoS ONE, 2012, 7, e31782.	1.1	392
79	Check Dam in the Loess Plateau of China: Engineering for Environmental Services and Food Security Environmental Science & Technology, 2011, 45, 10298-10299.	4.6	114
80	Effects of vegetation restoration on soil organic carbon sequestration at multiple scales in semi-arid Loess Plateau, China. Catena, 2011, 85, 58-66.	2.2	181
81	Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecological Complexity, 2011, 8, 284-293.	1.4	681
82	Major Ecosystems in China: Dynamics and Challenges for Sustainable Management. Environmental Management, 2011, 48, 13-27.	1.2	59
83	Land use change and anthropogenic driving forces: A case study in Yanhe River Basin. Chinese Geographical Science, 2011, 21, 587-599.	1.2	55
84	Remote sensing of ecosystem services: An opportunity for spatially explicit assessment. Chinese Geographical Science, 2010, 20, 522-535.	1.2	74
85	Local-Scale Spatial Variability of Soil Organic Carbon and its Stock in the Hilly Area of the Loess Plateau, China. Quaternary Research, 2010, 73, 70-76.	1.0	101
86	Contribution of tourism development to protected area management: local stakeholder perspectives. International Journal of Sustainable Development and World Ecology, 2009, 16, 30-36.	3.2	54
87	What motivates farmers to participate in sustainable agriculture? Evidence and policy implications. International Journal of Sustainable Development and World Ecology, 2009, 16, 374-380.	3.2	20
88	Responses of water erosion to rainfall extremes and vegetation types in a loess semiarid hilly area, NW China. Hydrological Processes, 2009, 23, 1780-1791.	1.1	83
89	Expanding the bridging capability of landscape ecology. Landscape Ecology, 2008, 23, 375-376.	1.9	16
90	Soil and water conservation on the Loess Plateau in China: review and perspective. Progress in Physical Geography, 2007, 31, 389-403.	1.4	380

#	Article	IF	CITATIONS
91	Resolving the Conflicts Between Biodiversity Conservation and Socioeconomic Development in China: Fuzzy Clustering Approach. Biodiversity and Conservation, 2006, 15, 2813-2827.	1.2	6
92	A multiscale soil loss evaluation index. Science Bulletin, 2006, 51, 448-456.	1.7	19