Pedro Matos Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078453/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches. Communications Biology, 2022, 5, .	4.4	30
2	Single-Molecule Super-Resolution Imaging of T-Cell Plasma Membrane CD4 Redistribution upon HIV-1 Binding. Viruses, 2021, 13, 142.	3.3	10
3	Selective Coordination of Cu2+ and Subsequent Anion Detection Based on a Naphthalimide-Triazine-(DPA)2 Chemosensor. Biosensors, 2020, 10, 129.	4.7	7
4	Superâ€beacons: Openâ€source probes with spontaneous tuneable blinking compatible with liveâ€cell superâ€resolution microscopy. Traffic, 2020, 21, 375-385.	2.7	9
5	Between life and death: strategies to reduce phototoxicity in super-resolution microscopy. Journal Physics D: Applied Physics, 2020, 53, 163001.	2.8	49
6	An Introduction to Live-Cell Super-Resolution Imaging. , 2020, , 35-58.		2
7	Nuclear pores as versatile reference standards for quantitative superresolution microscopy. Nature Methods, 2019, 16, 1045-1053.	19.0	236
8	NanoJ: a high-performance open-source super-resolution microscopy toolbox. Journal Physics D: Applied Physics, 2019, 52, 163001.	2.8	120
9	TMEM16F activation by Ca2+ triggers plasma membrane expansion and directs PD-1 trafficking. Scientific Reports, 2019, 9, 619.	3.3	35
10	Automating multimodal microscopy with NanoJ-Fluidics. Nature Communications, 2019, 10, 1223.	12.8	84
11	Fix Your Membrane Receptor Imaging: Actin Cytoskeleton and CD4 Membrane Organization Disruption by Chemical Fixation. Frontiers in Immunology, 2019, 10, 675.	4.8	57
12	Investigating Hepatitis C Virus Infection Using Super-Resolution Microscopy. Methods in Molecular Biology, 2019, 1911, 247-261.	0.9	1
13	Quantitative mapping and minimization of super-resolution optical imaging artifacts. Nature Methods, 2018, 15, 263-266.	19.0	266
14	Septins Recognize and Entrap Dividing Bacterial Cells for Delivery to Lysosomes. Cell Host and Microbe, 2018, 24, 866-874.e4.	11.0	62
15	SRRF: Universal live-cell super-resolution microscopy. International Journal of Biochemistry and Cell Biology, 2018, 101, 74-79.	2.8	130
16	VirusMapper: open-source nanoscale mapping of viral architecture through super-resolution microscopy. Scientific Reports, 2016, 6, 29132.	3.3	43
17	Fast live-cell conventional fluorophore nanoscopy with ImageJ through super-resolution radial fluctuations. Nature Communications, 2016, 7, 12471.	12.8	468
18	K63-Linked Ubiquitination Targets Toxoplasma gondii for Endo-lysosomal Destruction in IFNÎ ³ -Stimulated Human Cells. PLoS Pathogens, 2016, 12, e1006027.	4.7	92

PEDRO MATOS PEREIRA

#	Article	IF	CITATIONS
19	Staphylococcus aureus Survives with a Minimal Peptidoglycan Synthesis Machine but Sacrifices Virulence and Antibiotic Resistance. PLoS Pathogens, 2015, 11, e1004891.	4.7	82
20	High-content 3D multicolor super-resolution localization microscopy. Methods in Cell Biology, 2015, 125, 95-117.	1.1	31
21	Cell shape dynamics during the staphylococcal cell cycle. Nature Communications, 2015, 6, 8055.	12.8	208
22	Bacterial autolysins trim cell surface peptidoglycan to prevent detection by the Drosophila innate immune system. ELife, 2014, 3, e02277.	6.0	32
23	Reduction of the Peptidoglycan Crosslinking Causes a Decrease in Stiffness of the Staphylococcus aureus Cell Envelope. Biophysical Journal, 2014, 107, 1082-1089.	0.5	83
24	Murgocil is a Highly Bioactive Staphylococcal-Specific Inhibitor of the Peptidoglycan Glycosyltransferase Enzyme MurG. ACS Chemical Biology, 2013, 8, 2442-2451.	3.4	75
25	Inhibition of WTA Synthesis Blocks the Cooperative Action of PBPs and Sensitizes MRSA to β-Lactams. ACS Chemical Biology, 2013, 8, 226-233.	3.4	184
26	Restoring Methicillin-Resistant <i>Staphylococcus aureus</i> Susceptibility to β-Lactam Antibiotics. Science Translational Medicine, 2012, 4, 126ra35.	12.4	205
27	Fluorescent Reporters for Studies of Cellular Localization of Proteins in <i>Staphylococcus aureus</i> . Applied and Environmental Microbiology, 2010, 76, 4346-4353.	3.1	40
28	Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in <i>Staphylococcus aureus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18991-18996.	7.1	225
29	Effect of SDS micelles on the reactivity of 4′-methoxyflavylium ion: A stopped-flow and photochemical study. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185, 383-390.	3.9	7
30	Fluorescence Ratio Imaging Microscopy Shows Decreased Access of Vancomycin to Cell Wall Synthetic Sites in Vancomycin-Resistant <i>Staphylococcus aureus</i> . Antimicrobial Agents and Chemotherapy, 2007, 51, 3627-3633.	3.2	74