
Jean-Louis Marty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3078003/publications.pdf Version: 2024-02-01

IFAN-LOUIS MADTY

#	Article	IF	CITATIONS
1	Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. International Journal of Antimicrobial Agents, 2020, 56, 106054.	1.1	410
2	Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosensors and Bioelectronics, 2011, 26, 2724-2727.	5.3	343
3	Disposable Screen Printed Electrochemical Sensors: Tools for Environmental Monitoring. Sensors, 2014, 14, 10432-10453.	2.1	332
4	Twenty years research in cholinesterase biosensors: From basic research to practical applications. New Biotechnology, 2006, 23, 1-15.	2.7	320
5	Immobilization of acetylcholinesterase on screen-printed electrodes: comparative study between three immobilization methods and applications to the detection of organophosphorus insecticides. Analytica Chimica Acta, 2002, 464, 171-180.	2.6	215
6	Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC - Trends in Analytical Chemistry, 2018, 107, 60-77.	5.8	188
7	Biosensors for Pesticide Detection: New Trends. American Journal of Analytical Chemistry, 2012, 03, 210-232.	0.3	169
8	Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosensors and Bioelectronics, 2000, 15, 193-201.	5.3	167
9	New biorecognition molecules in biosensors for the detection of toxins. Biosensors and Bioelectronics, 2017, 87, 285-298.	5.3	155
10	Electrochemical DNA aptamer-based biosensor for OTA detection, using superparamagnetic nanoparticles. Sensors and Actuators B: Chemical, 2011, 156, 932-937.	4.0	144
11	Acetylcholinesterase in organic solvents for the detection of pesticides: Biosensor application. Biosensors and Bioelectronics, 1994, 9, 463-470.	5.3	142
12	Enzyme-Linked Aptamer Assays (ELAAs), based on a competition format for a rapid and sensitive detection of Ochratoxin A in wine. Food Control, 2011, 22, 737-743.	2.8	139
13	Label-free impedimetric immunosensor for sensitive detection of ochratoxin A. Biosensors and Bioelectronics, 2009, 24, 1888-1892.	5.3	135
14	Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Biosensors and Bioelectronics, 2012, 32, 208-212.	5.3	130
15	Detection of antibiotics in food: New achievements in the development of biosensors. TrAC - Trends in Analytical Chemistry, 2020, 127, 115883.	5.8	126
16	An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection. Electrochimica Acta, 2017, 244, 96-103.	2.6	123
17	Novel highly-performing immunosensor-based strategy for ochratoxin A detection in wine samples. Biosensors and Bioelectronics, 2008, 23, 995-1002.	5.3	120
18	Disposable and portable electrochemical aptasensor for label free detection of aflatoxin B1 in alcoholic beverages. Sensors and Actuators B: Chemical, 2016, 235, 466-473.	4.0	114

#	Article	IF	CITATIONS
19	A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Biosensors and Bioelectronics, 2012, 32, 56-61.	5.3	113
20	Advances in Enzyme-Based Biosensors for Pesticide Detection. Biosensors, 2018, 8, 27.	2.3	112
21	Aptamers: A Promising Tool for Ochratoxin A Detection in Food Analysis. Toxins, 2013, 5, 1988-2008.	1.5	109
22	Biosensors to detect marine toxins: Assessing seafood safety. Talanta, 2007, 72, 884-895.	2.9	108
23	Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents. Talanta, 2002, 57, 169-176.	2.9	107
24	Sensitive quantitation of Ochratoxin A in cocoa beans using differential pulse voltammetry based aptasensor. Food Chemistry, 2016, 192, 799-804.	4.2	104
25	Optical and Electrochemical Sensors and Biosensors for the Detection of Quinolones. Trends in Biotechnology, 2019, 37, 898-915.	4.9	104
26	Development of an Electrochemical Biosensor for the Detection of Aflatoxin M1 in Milk. Sensors, 2010, 10, 9439-9448.	2.1	102
27	Current Trends in Nanomaterial-Based Amperometric Biosensors. Sensors, 2014, 14, 23439-23461.	2.1	100
28	Disposable electrochemical aptasensor based on carbon nanotubes- V2O5-chitosan nanocomposite for detection of ciprofloxacin. Sensors and Actuators B: Chemical, 2018, 268, 278-286.	4.0	100
29	Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection. Analytica Chimica Acta, 2006, 562, 115-121.	2.6	99
30	Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample. Sensors and Actuators B: Chemical, 2017, 245, 507-515.	4.0	99
31	Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry. Talanta, 2013, 103, 14-19.	2.9	96
32	Electrochemical aptasensors for the assessment of food quality and safety. TrAC - Trends in Analytical Chemistry, 2016, 79, 60-70.	5.8	94
33	A review of the use of genetically engineered enzymes in electrochemical biosensors. Seminars in Cell and Developmental Biology, 2009, 20, 3-9.	2.3	93
34	Enzyme immobilization procedures on screen-printed electrodes used for the detection of anticholinesterase pesticides. Analytica Chimica Acta, 2004, 523, 107-115.	2.6	92
35	Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase. Biosensors and Bioelectronics, 2007, 23, 506-512.	5.3	92
36	Screen-printed poly(3,4-ethylenedioxythiophene) (PEDOT): A new electrochemical mediator for acetylcholinesterase-based biosensors. Talanta, 2010, 82, 957-961.	2.9	90

#	Article	IF	CITATIONS
37	Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. Talanta, 2010, 81, 1636-1642.	2.9	89
38	Highly sensitive amperometric immunosensors for microcystin detection in algae. Biosensors and Bioelectronics, 2007, 22, 1034-1040.	5.3	87
39	A label free aptasensor for Ochratoxin A detection in cocoa beans: An application to chocolate industries. Analytica Chimica Acta, 2015, 889, 106-112.	2.6	85
40	Detection of Anatoxin-a(s) in Environmental Samples of Cyanobacteria by Using a Biosensor with Engineered Acetylcholinesterases. Applied and Environmental Microbiology, 2002, 68, 4102-4106.	1.4	82
41	Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Analytical and Bioanalytical Chemistry, 2002, 374, 25-32.	1.9	81
42	Recent developments in non-enzymatic (bio)sensors for detection of pesticide residues: Focusing on antibody, aptamer and molecularly imprinted polymer. Talanta, 2021, 232, 122397.	2.9	80
43	Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta, 2015, 143, 157-161.	2.9	78
44	Fluorescence analyzer based on smartphone camera and wireless for detection of Ochratoxin A. Sensors and Actuators B: Chemical, 2016, 232, 462-468.	4.0	76
45	Label-Free Aptasensors for the Detection of Mycotoxins. Sensors, 2016, 16, 2178.	2.1	75
46	An electrochemical immunosensor for ochratoxin A based on immobilization of antibodies on diazonium-functionalized gold electrode. Electrochimica Acta, 2009, 54, 2180-2184.	2.6	74
47	Enzyme-linked immunosensor based on super paramagnetic nanobeads for easy and rapid detection of okadaic acid. Analytica Chimica Acta, 2011, 690, 248-252.	2.6	74
48	A Review of the Construction of Nano-Hybrids for Electrochemical Biosensing of Glucose. Biosensors, 2019, 9, 46.	2.3	74
49	Disposable cholinesterase biosensor for the detection of pesticides in water-miscible organic solvents. Analytica Chimica Acta, 2001, 431, 231-237.	2.6	73
50	Sensitive amperometric biosensor for dichlorovos quantification: Application to detection of residues on apple skin. Talanta, 2008, 74, 741-746.	2.9	73
51	Screen-printed biosensors for the control of wine quality based on lactate and acetaldehyde determination. Analytica Chimica Acta, 2002, 458, 203-213.	2.6	72
52	Development of a portable and disposable NS1 based electrochemical immunosensor for early diagnosis of dengue virus. Analytica Chimica Acta, 2018, 1026, 1-7.	2.6	71
53	Designed Strategies for Fluorescence-Based Biosensors for the Detection of Mycotoxins. Toxins, 2018, 10, 197.	1.5	71
54	Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Analytica Chimica Acta, 2016, 920, 37-46.	2.6	70

#	Article	IF	CITATIONS
55	Biosensors: potential in pesticide detection. TrAC - Trends in Analytical Chemistry, 1995, 14, 329-333.	5.8	69
56	Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Biosensors and Bioelectronics, 2011, 30, 43-48.	5.3	69
57	A novel electrochemical aptamer–antibody sandwich assay for lysozyme detection. Analyst, The, 2015, 140, 4148-4153.	1.7	69
58	Screen-printed electrodes with electropolymerized Meldola Blue as versatile detectors in biosensors. Biosensors and Bioelectronics, 2003, 18, 781-790.	5.3	68
59	Enzymatic recycling-based amperometric immunosensor for the ultrasensitive detection of okadaic acid in shellfish. Biosensors and Bioelectronics, 2008, 24, 716-722.	5.3	68
60	Detection of Antibiotics and Evaluation of Antibacterial Activity with Screen-Printed Electrodes. Sensors, 2018, 18, 901.	2.1	68
61	An electrochemical immunosensor based on covalent immobilization of okadaic acid onto screen printed carbon electrode via diazotization-coupling reaction. Talanta, 2011, 85, 513-518.	2.9	67
62	Trends in Flow-based Biosensing Systems for Pesticide Assessment. Sensors, 2006, 6, 1161-1186.	2.1	66
63	Enzyme sensor for the electrochemical detection of the marine toxin okadaic acid. Analytica Chimica Acta, 2007, 605, 87-93.	2.6	66
64	Electrochemical impedimetric immunosensor for the detection of okadaic acid in mussel sample. Sensors and Actuators B: Chemical, 2012, 171-172, 810-815.	4.0	66
65	Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: Application to the label free detection of small size molecules. Biosensors and Bioelectronics, 2013, 45, 168-173.	5.3	66
66	Adsorption: an easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes. Analytica Chimica Acta, 2003, 481, 209-211.	2.6	65
67	Development of an automated flow-based electrochemical aptasensor for on-line detection of Ochratoxin A. Sensors and Actuators B: Chemical, 2013, 176, 1160-1166.	4.0	65
68	Determination of Mycotoxins in Food: A Review of Bioanalytical to Analytical Methods. Applied Spectroscopy Reviews, 2015, 50, 728-774.	3.4	65
69	Versatile method of cholinesterase immobilisation via affinity bonds using Concanavalin A applied to the construction of a screen-printed biosensor. Biosensors and Bioelectronics, 2004, 20, 217-225.	5.3	63
70	Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample. Talanta, 2016, 158, 35-41.	2.9	63
71	Electrochemical Affinity Biosensors Based on Disposable Screen-Printed Electrodes for Detection of Food Allergens. Sensors, 2016, 16, 1863.	2.1	62
72	Towards the protein phosphatase-based biosensor for microcystin detection. Biosensors and Bioelectronics, 2005, 20, 1520-1530.	5.3	61

#	Article	IF	CITATIONS
73	Development of a colorimetric inhibition assay for microcystin-LR detection: Comparison of the sensitivity of different protein phosphatases. Talanta, 2011, 85, 2498-2503.	2.9	61
74	Recent advances in ochratoxin A-producing fungi detection based on PCR methods and ochratoxin A analysis in food matrices. Food Control, 2012, 26, 401-415.	2.8	61
75	Acetylcholinesterase-based biosensors for quantification of carbofuran, carbaryl, methylparaoxon, and dichlorvos in 5% acetonitrile. Analytical and Bioanalytical Chemistry, 2008, 392, 699-707.	1.9	60
76	A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde. Sensors and Actuators B: Chemical, 2008, 130, 32-37.	4.0	60
77	Impedimetric aflatoxin M1 immunosensor based on colloidal gold and silver electrodeposition. Sensors and Actuators B: Chemical, 2009, 138, 214-220.	4.0	60
78	One Step Assembly of Thin Films of Carbon Nanotubes on Screen Printed Interface for Electrochemical Aptasensing of Breast Cancer Biomarker. Sensors, 2016, 16, 1651.	2.1	60
79	Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Analytical Biochemistry, 2018, 545, 13-19.	1.1	60
80	Detection of organophosphorus insecticides with immobilized acetylcholinesterase - comparative study of two enzyme sensors. Analytical and Bioanalytical Chemistry, 2002, 374, 39-45.	1.9	59
81	Aptamer-based zearalenone assay based on the use of a fluorescein label and a functional graphene oxide as a quencher. Mikrochimica Acta, 2017, 184, 4401-4408.	2.5	59
82	A highly sensitive electrochemical immunosensor for zearalenone using screen-printed disposable electrodes. Journal of Electroanalytical Chemistry, 2019, 832, 336-342.	1.9	59
83	Chronoamperometric determination of d-lactate using screen-printed enzyme electrodes. Analytica Chimica Acta, 2001, 433, 81-88.	2.6	58
84	Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster. Biosensors and Bioelectronics, 2004, 20, 825-832.	5.3	57
85	Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers. Talanta, 2016, 153, 138-144.	2.9	57
86	Label free aptasensor for Lysozyme detection: A comparison of the analytical performance of two aptamers. Bioelectrochemistry, 2015, 105, 72-77.	2.4	56
87	High sensitive bienzymic sensor for the detection of dithiocarbamate fungicides. Analytica Chimica Acta, 1997, 347, 63-70.	2.6	52
88	Acetylcholine enzyme sensor for determining methamidophos insecticide. Analytica Chimica Acta, 2001, 434, 1-8.	2.6	52
89	Advantages of Carbon Nanomaterials in Electrochemical Aptasensors for Food Analysis. Electroanalysis, 2018, 30, 2-19.	1.5	52
90	Alumina sol–gel/sonogel-carbon electrode based on acetylcholinesterase for detection of organophosphorus pesticides. Talanta, 2008, 77, 217-221.	2.9	51

#	Article	IF	CITATIONS
91	Rapid high-throughput analysis of ochratoxin A by the self-assembly of DNAzyme–aptamer conjugates in wine. Talanta, 2013, 116, 520-526.	2.9	51
92	Recent Advances and Achievements in Nanomaterial-Based, and Structure Switchable Aptasensing Platforms for Ochratoxin A Detection. Sensors, 2013, 13, 15187-15208.	2.1	50
93	An Overview on Recent Progress in Electrochemical Biosensors for Antimicrobial Drug Residues in Animal-Derived Food. Sensors, 2017, 17, 1947.	2.1	50
94	Label free aptasensor for ochratoxin A detection using polythiophene-3-carboxylic acid. Talanta, 2018, 185, 513-519.	2.9	50
95	Amperometric determination of choline and acetylcholine with enzymes immobilized in a photocross-linkable polymer. Analytica Chimica Acta, 1990, 228, 49-53.	2.6	49
96	Insecticide identification using a flow injection analysis system with biosensors based on various cholinesterases. Analytica Chimica Acta, 2005, 539, 195-201.	2.6	49
97	Detection of the marine toxin okadaic acid: Assessing seafood safety. Talanta, 2013, 105, 306-316.	2.9	49
98	Enzyme inhibition-based biosensor for the electrochemical detection of microcystins in natural blooms of cyanobacteria. Talanta, 2007, 72, 179-186.	2.9	48
99	Rapid determination of pesticide mixtures using disposable biosensors based on genetically modified enzymes and artificial neural networks. Sensors and Actuators B: Chemical, 2012, 164, 22-28.	4.0	47
100	Nano-Aptasensing in Mycotoxin Analysis: Recent Updates and Progress. Toxins, 2017, 9, 349.	1.5	46
101	Development of a cytochrome c-based screen-printed biosensor for the determination of the antioxidant capacity of orange juices. Bioelectrochemistry, 2009, 76, 76-80.	2.4	45
102	Amperometric Biosensor Based on Tyrosinase Immobilized on to a Carbon Black Paste Electrode for Phenol Determination in Olive Oil. Analytical Letters, 2013, 46, 2705-2726.	1.0	45
103	Diazonium-functionalized tyrosinase-based biosensor for the detection of tea polyphenols. Mikrochimica Acta, 2010, 171, 187-193.	2.5	44
104	Electronic Tongue Using an Enzyme Inhibition Biosensor Array for the Resolution of Pesticide Mixtures. Electroanalysis, 2008, 20, 54-60.	1.5	42
105	Gold nanoparticle decorated single walled carbon nanotube nanocomposite with synergistic peroxidase like activity for <scp>d</scp> -alanine detection. RSC Advances, 2015, 5, 24853-24858.	1.7	42
106	Automated flow based biosensor for quantification of binary organophosphates mixture in milk using artificial neural network. Sensors and Actuators B: Chemical, 2015, 208, 228-237.	4.0	42
107	Development of an Impedimetric Aptasensor for Label Free Detection of Patulin in Apple Juice. Molecules, 2019, 24, 1017.	1.7	40
108	Bi-enzyme amperometric d-lactate sensor using macromolecular NAD+. Analytica Chimica Acta, 1995, 315, 297-302.	2.6	39

7

#	Article	IF	CITATIONS
109	Development of an aptasensor based on a fluorescent particles-modified aptamer for ochratoxin A detection. Analytical and Bioanalytical Chemistry, 2015, 407, 7815-7822.	1.9	39
110	Electrospinning of graphene-oxide onto screen printed electrodes for heavy metal biosensor. Sensors and Actuators B: Chemical, 2017, 247, 366-373.	4.0	39
111	Identification of fenthion and temephos and their transformation products in water by high-performance liquid chromatography with diode array detection and atmospheric pressure chemical ionization mass spectrometric detection. Journal of Chromatography A, 1997, 777, 99-114.	1.8	38
112	Development of a portable biosensor for screening neurotoxic agents in water samples. Talanta, 2008, 75, 1208-1213.	2.9	38
113	Electrochemical grafting of long spacer arms of hexamethyldiamine on a screen printed carbon electrode surface: application in target induced ochratoxin A electrochemical aptasensor. Analyst, The, 2013, 138, 2951.	1.7	38
114	Sensitive biosensor based on recombinant PP1Î \pm for microcystin detection. Biosensors and Bioelectronics, 2015, 67, 700-707.	5.3	38
115	Tetramethyl-6-carboxyrhodamine quenching-based aptasensing platform for aflatoxin B1: Analytical performance comparison of two aptamers. Analytical Biochemistry, 2016, 508, 19-24.	1.1	38
116	Recent Advances in Electrochemical-Based Sensing Platforms for Aflatoxins Detection. Chemosensors, 2017, 5, 1.	1.8	38
117	Phosphotriesterase: A complementary tool for the selective detection of two organophosphate insecticides: Chlorpyrifos and chlorfenvinfos. Talanta, 2009, 77, 1627-1631.	2.9	37
118	Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of okadaic acid in mussel sample. Talanta, 2012, 99, 232-237.	2.9	37
119	Development of a novel label-free amperometric immunosensor for the detection of okadaic acid. Analytica Chimica Acta, 2012, 724, 92-97.	2.6	37
120	Reagentless ethanol sensor based on a NAD-dependent dehydrogenase. Biosensors and Bioelectronics, 1997, 12, 1083-1088.	5.3	36
121	Reusable ethanol sensor based on a NAD+-dependent dehydrogenase without coenzyme addition. Analytica Chimica Acta, 1997, 340, 143-148.	2.6	36
122	Biosensors based on enzyme inhibition: Detection of organophosphorus and carbamate insecticides and dithiocarbamate fungicides. Field Analytical Chemistry and Technology, 1999, 3, 171-178.	0.9	36
123	The use of Artificial Neural Networks for the selective detection of two organophosphate insecticides: Chlorpyrifos and chlorfenvinfos. Talanta, 2009, 79, 507-511.	2.9	36
124	Impact of pH on the Stability and the Cross-Reactivity of Ochratoxin A and Citrinin. Toxins, 2013, 5, 2324-2340.	1.5	36
125	DEVELOPMENT OF A DISPOSABLE BIOSENSOR FOR THE DETECTION OF METAM-SODIUM AND ITS METABOLITE MITC. Analytical Letters, 2001, 34, 513-528.	1.0	35
126	Design of a redox-active surface for ultrasensitive redox capacitive aptasensing of aflatoxin M1 in milk. Talanta, 2019, 195, 525-532.	2.9	35

#	Article	IF	CITATIONS
127	Cholinesterase immobilisation on the surface of screen-printed electrodes based on concanavalin A affinity. Analytica Chimica Acta, 2005, 530, 1-6.	2.6	34
128	Detection of ochratoxin A in aptamer assay using total internal reflection ellipsometry. Sensors and Actuators B: Chemical, 2018, 263, 248-251.	4.0	34
129	Aptamer-modified pencil graphite electrodes for the impedimetric determination of ochratoxin A. Food Control, 2020, 115, 107271.	2.8	34
130	Organophosphorus insecticides extraction and heterogeneous oxidation on column for analysis with an acetylcholinesterase (AChE) biosensor. Analytica Chimica Acta, 2006, 578, 162-169.	2.6	33
131	Kinetic insight into the mechanism of cholinesterasterase inhibition by aflatoxin B1 to develop biosensors. Biosensors and Bioelectronics, 2009, 24, 2119-2124.	5.3	33
132	Design of a novel magnetic particles based electrochemical biosensor for organophosphate insecticide detection in flow injection analysis. Sensors and Actuators B: Chemical, 2015, 208, 491-496.	4.0	33
133	Development of an oligosorbent for detection of ochratoxin A. Food Control, 2011, 22, 1790-1796.	2.8	32
134	A novel colorimetric competitive aptamer assay for lysozyme detection based on superparamagnetic nanobeads. Talanta, 2017, 165, 436-441.	2.9	32
135	A novel microbial sensor using luminous bacteria. Biosensors and Bioelectronics, 1992, 7, 273-277.	5.3	30
136	Affinity Methods to Immobilize Acetylcholinesterases for Manufacturing Biosensors. Analytical Letters, 2004, 37, 1571-1588.	1.0	29
137	An Overview of Recent Electrochemical Immunosensing Strategies for Mycotoxins Detection. Electroanalysis, 2016, 28, 1750-1763.	1.5	29
138	An enhanced Nonenzymatic Electrochemical Glucose Sensor Based on Copperâ€Palladium Nanoparticles Modified Glassy Carbon Electrodes. Electroanalysis, 2018, 30, 1811-1819.	1.5	29
139	Switchable fluorescence sensor toward PAT via CA-MWCNTs quenched aptamer-tagged carboxyfluorescein. Food Chemistry, 2020, 312, 126048.	4.2	29
140	An Overview of Optical and Electrochemical Sensors and Biosensors for Analysis of Antioxidants in Food during the Last 5 Years. Sensors, 2021, 21, 1176.	2.1	29
141	Optical Biosensors for Diagnostics of Infectious Viral Disease: A Recent Update. Diagnostics, 2021, 11, 2083.	1.3	29
142	Aptamer-Based Lateral Flow Assays: Current Trends in Clinical Diagnostic Rapid Tests. Pharmaceuticals, 2022, 15, 90.	1.7	28
143	Catechol monophosphate as a new substrate for screen-printed amperometric biosensors with immobilized phosphatases. Sensors and Actuators B: Chemical, 2006, 113, 787-796.	4.0	27
144	Development of an efficient protein phosphatase-based colorimetric test for okadaic acid detection. Analytica Chimica Acta, 2011, 702, 262-268.	2.6	27

#	Article	IF	CITATIONS
145	Novel Amperometric Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Azide Covalently Immobilized on Ethynylâ€Modified Screenâ€Printed Carbon Electrode via Click Chemistry. Electroanalysis, 2012, 24, 1446-1452.	1.5	27
146	Nano-Engineered Biomimetic Optical Sensors for Clucose Monitoring in Diabetes. Sensors, 2016, 16, 1931.	2.1	27
147	Development of a label-free electrochemical aptasensor based on diazonium electrodeposition: Application to cadmium detection in water. Analytical Biochemistry, 2021, 612, 113956.	1.1	27
148	Enzymatic recycling for signal amplification: Improving microcystin detection with biosensors. Sensors and Actuators B: Chemical, 2008, 129, 263-267.	4.0	26
149	Artificial neural network implementation in single low-cost chip for the detection of insecticides by modeling of screen-printed enzymatic sensors response. Computers and Electronics in Agriculture, 2010, 74, 223-229.	3.7	26
150	Titanium Dioxide Nanoparticles (TiO2) Quenching Based Aptasensing Platform: Application to Ochratoxin A Detection. Toxins, 2015, 7, 3771-3784.	1.5	26
151	Reagentless Sensors for Acetaldehyde. Analytical Letters, 1997, 30, 1069-1080.	1.0	25
152	Strategies for developing NADH detectors based on Meldola Blue and screen-printed electrodes: a comparative study. Talanta, 2003, 59, 751-765.	2.9	25
153	Nanozeolite-assembled interface towards sensitive biosensing. Electrochemistry Communications, 2007, 9, 1525-1529.	2.3	25
154	Electrochemistry and biosensing activity of cytochrome c immobilized in macroporous materials. Mikrochimica Acta, 2011, 175, 87-95.	2.5	25
155	Improvement of the efficiency and simplification of ELISA tests for rapid and ultrasensitive detection of okadaic acid in shellfish. Food Control, 2013, 30, 144-149.	2.8	24
156	Textural characterisation of graphite matrices using electrochemical methods. Carbon, 2003, 41, 123-130.	5.4	23
157	Strategies to develop malic acid biosensors based on malate quinone oxidoreductase (MQO). Biosensors and Bioelectronics, 2006, 21, 2290-2297.	5.3	23
158	Electrochemical aptamer-based sensors. Bioanalytical Reviews, 2010, 1, 141-157.	0.1	23
159	A Simple Colorimetric Enzymatic-Assay for Okadaic Acid Detection Based on the Immobilization of Protein Phosphatase 2A in Sol-Gel. Applied Biochemistry and Biotechnology, 2012, 166, 47-56.	1.4	23
160	Low cost optical device for detection of fluorescence from Ochratoxin A using a CMOS sensor. Sensors and Actuators B: Chemical, 2017, 246, 606-614.	4.0	23
161	Development of Highly Sensitive Sensor Based on Bioengineered Acetylcholinesterase Immobilized by Affinity Method. Analytical Letters, 2003, 36, 1865-1885.	1.0	22
162	Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes. Mikrochimica Acta, 2009, 167, 75-79.	2.5	22

#	Article	IF	CITATIONS
163	Characterization of the gold-catalyzed deposition of silver on graphite screen-printed electrodes and their application to the development of impedimetric immunosensors. Talanta, 2009, 80, 942-946.	2.9	22
164	Biosensor-controlled degradation of chlorpyrifos and chlorfenvinfos using a phosphotriesterase-based detoxification column. Chemosphere, 2010, 78, 1-6.	4.2	22
165	An electrochemical sensor based on TiO ₂ /activated carbon nanocomposite modified screen printed electrode and its performance for phenolic compounds detection in water samples. International Journal of Environmental Analytical Chemistry, 2016, 96, 237-246.	1.8	22
166	Label-Free Optical Detection of Mycotoxins Using Specific Aptamers Immobilized on Gold Nanostructures. Toxins, 2018, 10, 291.	1.5	22
167	Nanomaterials in fluorescence-based biosensors: Defining key roles. Nano Structures Nano Objects, 2021, 27, 100774.	1.9	22
168	An Electrochemical Method for Sensitive Determination of Antioxidant Capacity. Electroanalysis, 2009, 21, 1395-1400.	1.5	21
169	Selective spectrophotometric detection of insecticides using cholinesterases, phosphotriesterase and chemometric analysis. Enzyme and Microbial Technology, 2010, 46, 212-216.	1.6	21
170	Automatic Electronic Tongue for On-Line Detection and Quantification of Organophosphorus and Carbamate Pesticides Using Enzymatic Screen Printed Biosensors. Analytical Letters, 2013, 46, 1743-1757.	1.0	21
171	Screen-printed electrochemical immunosensor based on a novel nanobody for analyzing aflatoxin M1 in milk. Food Chemistry, 2022, 383, 132598.	4.2	21
172	Electrochemical characterization of a superoxide biosensor based on the co-immobilization of cytochrome c and XOD on SAM-modified gold electrodes and application to garlic samples. Talanta, 2009, 79, 289-294.	2.9	20
173	Conjugation of genetically engineered protein phosphatases to magnetic particles for okadaic acid detection. Journal of Biotechnology, 2012, 157, 89-95.	1.9	19
174	Development of an EnFET for the detection of organophosphorous and carbamate insecticides. Analytical and Bioanalytical Chemistry, 2003, 376, 476-480.	1.9	18
175	Integrated plant biotechnologies applied to safer and healthier food production: The Nutra-Snack manufacturing chain. Trends in Food Science and Technology, 2011, 22, 353-366.	7.8	18
176	Optimization of Hydrogen Peroxide Detection for a Methyl Mercaptan Biosensor. Sensors, 2013, 13, 5028-5039.	2.1	18
177	Interference-Free Biosensor Based on Screen-Printing Technology and Sol-Gel Immobilization for Determination of Acetaldehyde in Wine. Journal of AOAC INTERNATIONAL, 2002, 85, 1382-1389.	0.7	17
178	Colorimetric Analysis of Ochratoxin A in Beverage Samples. Sensors, 2016, 16, 1888.	2.1	17
179	Urea Biosensor Based on a CO ₂ Microsensor. ACS Omega, 2020, 5, 27582-27590.	1.6	17
180	Electrochemical biosensors combining aptamers and enzymatic activity: Challenges and analytical opportunities. Electrochimica Acta, 2021, 390, 138863.	2.6	17

#	Article	IF	CITATIONS
181	A New Disposable Biosensor for the Accurate and Sensitive Detection of Ethylenebis(Dithiocarbamate) Fungicides. Analytical Letters, 1999, 32, 1723-1738.	1.0	16
182	An electrochemical aptasensor based on polythiophene-3-carboxylic acid assisted methylene blue for aflatoxin B1 detection. Sensing and Bio-Sensing Research, 2019, 25, 100290.	2.2	16
183	An Approach to an Inhibition Electronic Tongue to Detect On-Line Organophosphorus Insecticides Using a Computer Controlled Multi-Commuted Flow System. Sensors, 2011, 11, 3791-3802.	2.1	15
184	Detection of glycoalkaloids using disposable biosensors based on genetically modified enzymes. Analytical Biochemistry, 2014, 457, 85-90.	1.1	15
185	Application of response surface methodology to optimization of glutaraldehyde activation of a support for enzyme immobilization. Applied Microbiology and Biotechnology, 1985, 22, 88.	1.7	14
186	Biosensors as Analytical Tools in Food Fermentation Industry. Advances in Experimental Medicine and Biology, 2010, 698, 293-307.	0.8	14
187	Highly sensitive detection and discrimination of LR and YR microcystins based on protein phosphatases and an artificial neural network. Analytical and Bioanalytical Chemistry, 2012, 404, 711-720.	1.9	14
188	Versatile SPR aptasensor for detection of lysozyme dimer in oligomeric and aggregated mixtures. Biosensors and Bioelectronics, 2016, 83, 353-360.	5.3	14
189	Enzyme Immobilization by Entrapment Within a Gel Network. Methods in Molecular Biology, 2013, 1051, 229-239.	0.4	13
190	Low-cost and portable absorbance measuring system to carbamate and organophosphate pesticides. Sensors and Actuators B: Chemical, 2014, 203, 81-88.	4.0	13
191	Functionalized graphene oxide–polypyrrole–chitosan (fGO–PPy–CS) modified screen-printed electrodes for non-enzymatic hydrogen peroxide detection. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	13
192	Highly sensitive label-free in vitro detection of aflatoxin B1 in an aptamer assay using optical planar waveguide operating as a polarization interferometer. Analytical and Bioanalytical Chemistry, 2019, 411, 7717-7724.	1.9	13
193	Ultrasensitive ciprofloxacin assay based on the use of a fluorescently labeled aptamer and a nanocomposite prepared from carbon nanotubes and MoSe2. Mikrochimica Acta, 2019, 186, 507.	2.5	13
194	Displacement immunoassay for the detection of ochratoxin A using ochratoxin B modified glass beads. Analytical and Bioanalytical Chemistry, 2012, 402, 2861-2870.	1.9	12
195	Protic ionic liquids as a versatile modulator and stabilizer in regulating artificial peroxidase activity of carbon materials for glucose colorimetric sensing. Journal of Molecular Liquids, 2017, 243, 333-340.	2.3	12
196	Development of a highly sensitive xanthine oxidase-based biosensor for the determination of antioxidant capacity in Amazonian fruit samples. Talanta, 2019, 204, 626-632.	2.9	12
197	Immobilization of Enzymes on Magnetic Beads Through Affinity Interactions. Methods in Molecular Biology, 2013, 1051, 139-148.	0.4	12
198	Enzyme Sensor for the Detection of Herbicides Inhibiting Acetolactate Synthase. Analytical Letters, 1996, 29, 1259-1271.	1.0	11

#	Article	IF	CITATIONS
199	Bioelectronic sniffers for formaldehyde in the gas phase. International Journal of Environmental Analytical Chemistry, 2005, 85, 917-925.	1.8	11
200	Design of a fluorescence aptaswitch based on the aptamer modulated nano-surface impact on the fluorescence particles. RSC Advances, 2016, 6, 65579-65587.	1.7	11
201	Carbon Nanofiber and Meldola Blue Based Electrochemical Sensor for NADH: Application to the Detection of Benzaldehyde. Electroanalysis, 2018, 30, 2676-2688.	1.5	11
202	Biossensor enzimático para detecção de fungicidas ditiocarbamatos: estudo cinético da enzima aldeÃdo desidrogenase e otimização do biossensor. Quimica Nova, 2007, 30, 9-17.	0.3	10
203	Development of a Xanthine Oxidase Modified Amperometric Electrode for the Determination of the Antioxidant Capacity. Electroanalysis, 2010, 22, 2429-2433.	1.5	10
204	Portable and low cost fluorescence set-up for in-situ screening of Ochratoxin A. Talanta, 2016, 159, 395-400.	2.9	10
205	Polymer scaffold layers of screen-printed electrodes for homogeneous deposition of silver nanoparticles: application to the amperometric detection of hydrogen peroxide. Mikrochimica Acta, 2019, 186, 810.	2.5	10
206	Detoxification of organophosphate residues using phosphotriesterase and their evaluation using flow based biosensor. Analytica Chimica Acta, 2012, 745, 64-69.	2.6	9
207	<i>In vitro</i> investigation of anticholinesterase activity of four biochemical pesticides: spinosad, pyrethrum, neem bark extract and veratrine. Journal of Pesticide Sciences, 2014, 39, 48-52.	0.8	8
208	Nanomaterial-based biosensors for food contaminant assessment. , 2017, , 805-839.		8
209	Investigation of a Truncated Aptamer for Ofloxacin Detection Using a Rapid FRET-Based Apta-Assay. Antibiotics, 2020, 9, 860.	1.5	8
210	Analysis of Recent Bio-/Nanotechnologies for Coronavirus Diagnosis and Therapy. Sensors, 2021, 21, 1485.	2.1	8
211	A Sensitive Aptasensor Using Biotin-Streptavidin System for Patulin Detection in Apple Juice. Biosensors, 2022, 12, 59.	2.3	8
212	Interference-free biosensor based on screen-printing technology and sol-gel immobilization for determination of acetaldehyde in wine. Journal of AOAC INTERNATIONAL, 2002, 85, 1382-9.	0.7	8
213	Chemical modification of horseradish peroxidase with several methoxypolyethylene glycols. Applied Biochemistry and Biotechnology, 1998, 73, 173-184.	1.4	7
214	Smartphone as a Portable Detector, Analytical Device, or Instrument Interface. , 0, , .		7
215	Photoinduced discharge of electrons stored in a TiO2-MWCNT composite to an analyte: application to the fluorometric determination of hydrogen peroxide, glucose and aflatoxin B1. Mikrochimica Acta, 2018, 185, 26.	2.5	7
216	Cytochrome câ€Based Amperometric Sensors for Superoxide Detection: Where Their Signal Comes From?. Electroanalysis, 2013, 25, 448-452.	1.5	6

#	Article	IF	CITATIONS
217	One step growth of electro-assisted BSA functionalized screen-printed carbon interface with improved antifouling characteristics. Journal of Electroanalytical Chemistry, 2018, 816, 107-113.	1.9	6
218	Fabrication of electro-active nano-trans surfaces to design label free electrochemical aptasensor for ochratoxin A detection. Electrochimica Acta, 2021, 379, 138172.	2.6	6
219	Potentialities of expanded natural graphite as a new transducer for NAD+-dependent dehydrogenase amperometric biosensors. Analytica Chimica Acta, 2003, 484, 25-31.	2.6	5
220	Chapter 15 Ultra-sensitive determination of pesticides via cholinesterase-based sensors for environmental analysis. Comprehensive Analytical Chemistry, 2007, 49, 311-330.	0.7	5
221	Ligand Assisted Stabilization of Fluorescence Nanoparticles; an Insight on the Fluorescence Characteristics, Dispersion Stability and DNA Loading Efficiency of Nanoparticles. Journal of Fluorescence, 2016, 26, 1407-1414.	1.3	5
222	Design of a portable luminescence bio-tool for on-site analysis of heavy metals in water samples. International Journal of Environmental Analytical Chemistry, 2018, 98, 1081-1094.	1.8	5
223	Synthesis and characterization of a new ceramic nanomaterial SiO2/NPsSm2O3/C-graphite for the development of electrochemical sensors. Materials Chemistry and Physics, 2020, 243, 122255.	2.0	5
224	Mathematical Modelling of Biosensing Platforms Applied for Environmental Monitoring. Chemosensors, 2021, 9, 50.	1.8	5
225	Sonogel–carbon electrode based on hemin for detection of superoxide. Talanta, 2010, 80, 1805-1808.	2.9	4
226	Aptasensors, an Analytical Solution for Mycotoxins Detection. Comprehensive Analytical Chemistry, 2017, , 101-146.	0.7	3
227	Structure-Functional Effects of Ethanol on <i>Drosophzla Melanogaster</i> Acetylcholinesterase Probed by Kinetic Studies with Substrate and Inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 1999, 14, 125-149.	0.5	2
228	Electrochemical Determination of the Antioxidant Capacity of Organic Compounds. ECS Transactions, 2008, 15, 471-478.	0.3	2
229	Enantioselective inhibition of immobilized acetylcholinesterase in biosensor determination of pesticides. Open Chemistry, 2012, 10, 1760-1765.	1.0	2
230	Electrochemical Biosensors for Food Security: Mycotoxins Detection. Advanced Sciences and Technologies for Security Applications, 2016, , 469-490.	0.4	2
231	Inhibition of Low-Density Lipoprotein Peroxidation by BHA Use: Fluorimetric Assay. Analytical Letters, 2008, 41, 3253-3263.	1.0	1
232	Immobilization of Enzymes on Magnetic Beads Through Affinity Interactions. Methods in Molecular Biology, 2020, 2100, 189-198.	0.4	1
233	Chemical modification of acetylcholinesterase with methoxypolyethylene glycol. Applied Biochemistry and Biotechnology, 1997, 67, 153-163.	1.4	0
234	Optical methods using smartphone platforms for mycotoxin detection. , 2021, , 37-56.		0