Dominic J Wells

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3077829/publications.pdf

Version: 2024-02-01

279701 233338 3,252 46 23 45 citations h-index g-index papers 49 49 49 4131 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet, The, 2011, 378, 595-605.	6.3	803
2	Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurology, The, 2009, 8, 918-928.	4.9	617
3	Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering. Cell Reports, 2018, 23, 899-908.	2.9	245
4	Expression of human full-length and minidystrophin in transgenic mdx mice: implications for gene therapy of Duchenne muscular dystrophy. Human Molecular Genetics, 1995, 4, 1245-1250.	1.4	152
5	How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the <i>mdx</i> mouse. Human Molecular Genetics, 2015, 24, 4225-4237.	1.4	116
6	Codon and mRNA Sequence Optimization of Microdystrophin Transgenes Improves Expression and Physiological Outcome in Dystrophic mdx Mice Following AAV2/8 Gene Transfer. Molecular Therapy, 2008, 16, 1825-1832.	3.7	107
7	Protective effects of heat shock protein 27 in a model of ALS occur in the early stages of disease progression. Neurobiology of Disease, 2008, 30, 42-55.	2.1	101
8	Musculoskeletal Geometry, Muscle Architecture and Functional Specialisations of the Mouse Hindlimb. PLoS ONE, 2016, 11, e0147669.	1.1	100
9	Chronic Systemic Therapy With Low-dose Morpholino Oligomers Ameliorates the Pathology and Normalizes Locomotor Behavior in mdx Mice. Molecular Therapy, 2011, 19, 345-354.	3.7	97
10	Growth differentiation factorâ€15 is associated with muscle mass in chronic obstructive pulmonary disease and promotes muscle wasting <i>in vivo</i> . Journal of Cachexia, Sarcopenia and Muscle, 2016, 7, 436-448.	2.9	91
11	Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model. Journal of Anatomy, 2016, 229, 514-535.	0.9	91
12	Metformin Treatment Has No Beneficial Effect in a Dose-Response Survival Study in the SOD1G93A Mouse Model of ALS and Is Harmful in Female Mice. PLoS ONE, 2011, 6, e24189.	1.1	73
13	Physiological Characterization of Muscle Strength With Variable Levels of Dystrophin Restoration in mdx Mice Following Local Antisense Therapy. Molecular Therapy, 2011, 19, 165-171.	3.7	72
14	Transgenic Overexpression of LARGE Induces α-Dystroglycan Hyperglycosylation in Skeletal and Cardiac Muscle. PLoS ONE, 2010, 5, e14434.	1.1	42
15	Animal welfare and the 3Rs in European biomedical research. Annals of the New York Academy of Sciences, 2011, 1245, 14-16.	1.8	41
16	Tracking progress: an update on animal models for Duchenne muscular dystrophy. DMM Disease Models and Mechanisms, 2018, 11 , .	1.2	41
17	Identification and Validation of Quantitative PCR Reference Genes Suitable for Normalizing Expression in Normal and Dystrophic Cell Culture Models of Myogenesis. PLOS Currents, 2014, 6, .	1.4	36
18	The transgenic expression of LARGE exacerbates the muscle phenotype of dystroglycanopathy mice. Human Molecular Genetics, 2014, 23, 1842-1855.	1.4	35

#	Article	IF	CITATIONS
19	Identification of qPCR reference genes suitable for normalizing gene expression in the mdx mouse model of Duchenne muscular dystrophy. PLoS ONE, 2019, 14, e0211384.	1.1	35
20	Preventing phosphorylation of dystroglycan ameliorates the dystrophic phenotype in mdx mouse. Human Molecular Genetics, 2012, 21, 4508-4520.	1.4	33
21	What is the level of dystrophin expression required for effective therapy of Duchenne muscular dystrophy?. Journal of Muscle Research and Cell Motility, 2019, 40, 141-150.	0.9	26
22	Poloxomer 188 Has a Deleterious Effect on Dystrophic Skeletal Muscle Function. PLoS ONE, 2014, 9, e91221.	1.1	26
23	Focus on the Role of D-serine and D-amino Acid Oxidase in Amyotrophic Lateral Sclerosis/Motor Neuron Disease (ALS). Frontiers in Molecular Biosciences, 2018, 5, 8.	1.6	25
24	A New Extensively Characterised Conditionally Immortal Muscle Cell-Line for Investigating Therapeutic Strategies in Muscular Dystrophies. PLoS ONE, 2011, 6, e24826.	1.1	22
25	The TREAT-NMD advisory committee for therapeutics (TACT): an innovative de-risking model to foster orphan drug development. Orphanet Journal of Rare Diseases, 2015, 10, 49.	1.2	21
26	Determination of qPCR Reference Genes Suitable for Normalizing Gene Expression in a Canine Model of Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2018, 5, 177-191.	1.1	20
27	Improving translatability of preclinical studies for neuromuscular disorders: lessons from the TREAT-NMD Advisory Committee for Therapeutics (TACT). DMM Disease Models and Mechanisms, 2020, 13, .	1.2	18
28	Restoration of dystrophin expression using the Sleeping Beauty transposon. PLOS Currents, 2011, 3, RRN1296.	1.4	14
29	A decade of optimizing drug development for rare neuromuscular disorders through TACT. Nature Reviews Drug Discovery, 2020, 19, 1-2.	21.5	12
30	Multiplex in situÂhybridization within a single transcript: RNAscope reveals dystrophin mRNA dynamics. PLoS ONE, 2020, 15, e0239467.	1.1	12
31	Genetically Modified Animals and Pharmacological Research. Handbook of Experimental Pharmacology, 2010, , 213-226.	0.9	11
32	Characterisation of the pathogenic effects of the in vivo expression of an ALS-linked mutation in D-amino acid oxidase: Phenotype and loss of spinal cord motor neurons. PLoS ONE, 2017, 12, e0188912.	1.1	11
33	Cmah-dystrophin deficient mdx mice display an accelerated cardiac phenotype that is improved following peptide-PMO exon skipping treatment. Human Molecular Genetics, 2019, 28, 396-406.	1.4	10
34	Systemic AAV Gene Therapy Close to Clinical Trials for Several Neuromuscular Diseases. Molecular Therapy, 2017, 25, 834-835.	3.7	9
35	Simvastatin Treatment Does Not Ameliorate Muscle Pathophysiology in a Mouse Model for Duchenne Muscular Dystrophy. Journal of Neuromuscular Diseases, 2020, 8, 1-19.	1.1	9
36	Musculoskeletal magnetic resonance imaging in the DE50-MD dog model of Duchenne muscular dystrophy. Neuromuscular Disorders, 2021, 31, 736-751.	0.3	9

#	Article	IF	CITATIONS
37	Improving translational studies: lessons from rare neuromuscular diseases. DMM Disease Models and Mechanisms, 2015, 8, 1175-1177.	1.2	7
38	Histopathological Evaluation of Skeletal Muscle with Specific Reference to Mouse Models of Muscular Dystrophy. Current Protocols in Mouse Biology, 2016, 6, 343-363.	1.2	7
39	Gene Delivery to Dystrophic Muscle. Methods in Molecular Biology, 2008, 423, 421-431.	0.4	7
40	Validation of DE50-MD dogs as a model for the brain phenotype of Duchenne muscular dystrophy. DMM Disease Models and Mechanisms, 2022, , .	1,2	5
41	Identification of qPCR reference genes suitable for normalising gene expression in the developing mouse embryo. Wellcome Open Research, 2021, 6, 197.	0.9	4
42	Investigating Synthetic Oligonucleotide Targeting of Mir31 in Duchenne Muscular Dystrophy. PLOS Currents, 2016, 8, .	1.4	4
43	Olfaction variation in mouse husbandry and its implications for refinement and standardization: UK survey of animal scents. Laboratory Animals, 2016, 50, 362-369.	0.5	3
44	Longitudinal assessment of blood-borne musculoskeletal disease biomarkers in the DE50-MD dog model of Duchenne muscular dystrophy. Wellcome Open Research, 0, 6, 354.	0.9	3
45	Olfactory variation in mouse husbandry and its implications for refinement and standardization: UK survey of non-animal scents. Laboratory Animals, 2016, 50, 286-295.	0.5	2
46	Designing translationally relevant preclinical studies of new therapeutics. Experimental Physiology, 2017, 102, 616-616.	0.9	0