Yoshimichi Hagiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3077634/publications.pdf

Version: 2024-02-01

1040056 996975 48 322 9 15 citations g-index h-index papers 48 48 48 202 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Ice Growth Suppression in the Solution Flows of Antifreeze Protein and Sodium Chloride in a Mini-Channel. Processes, 2021, 9, 306.	2.8	1
2	Numerical simulation on the freezing of deposited or impinged water droplets on a cold surface. Journal of Thermal Science and Technology, 2021, 16, JTST0006-JTST0006.	1.1	1
3	Ice-phobic glass-substrate surfaces coated with polypeptides inspired by antifreeze protein. International Journal of Refrigeration, 2020, 114, 201-209.	3.4	7
4	The Inhibition of Icing and Frosting on Glass Surfaces by the Coating of Polyethylene Glycol and Polypeptide Mimicking Antifreeze Protein. Biomolecules, 2020, 10, 259.	4.0	7
5	Suppression of frost layer growth on glass or copper surfaces with micro-scale lattice-patterned grooves. International Journal of Refrigeration, 2019, 106, 33-40.	3.4	13
6	Effects of Winter Flounder Antifreeze Protein on the Growth of Ice Particles in an Ice Slurry Flow in Mini-Channels. Biomolecules, 2019, 9, 70.	4.0	3
7	Pressure drag and friction drag for truncated pyramids in a turbulent open channel flow. Journal of Fluid Science and Technology, 2019, 14, JFST0001-JFST0001.	0.6	3
8	Molecular Dynamics Analysis of Synergistic Effects of Ions and Winter Flounder Antifreeze Protein Adjacent to Ice-Solution Surfaces. Crystals, 2018, 8, 302.	2.2	4
9	Suppression of droplets freezing on glass surfaces on which antifreeze polypeptides are adhered by a silane coupling agent. PLoS ONE, 2018, 13, e0204686.	2.5	10
10	Effects of short-time preheating on ice growth in antifreeze polypeptides solutions in a narrow space. Heat and Mass Transfer, 2018, 54, 2415-2424.	2.1	3
11	Ice growth and interface oscillation of water droplets impinged on a cooling surface. Journal of Crystal Growth, 2017, 468, 46-53.	1.5	16
12	Effects of preheating on ice growth in antifreeze polypeptides solutions in a narrow space. Journal of Physics: Conference Series, 2016, 745, 032129.	0.4	0
13	Ice Growth Inhibition in Antifreeze Polypeptide Solution by Short-Time Solution Preheating. PLoS ONE, 2016, 11, e0154782.	2.5	6
14	Diffusion of cations in salt solutions between ice walls. Molecular Simulation, 2015, 41, 980-985.	2.0	1
15	Supercooling enhancement by adding antifreeze protein and ions to water in a narrow space. International Journal of Heat and Mass Transfer, 2015, 86, 55-64.	4.8	13
16	Effects of ions on winter flounder antifreeze protein and water molecules near an ice/water interface. Molecular Simulation, 2012, 38, 26-37.	2.0	6
17	Temperature distribution and local heat flux in the unidirectional freezing of antifreeze-protein solution. International Journal of Heat and Mass Transfer, 2012, 55, 2384-2393.	4.8	9
18	J055012 Motion Characteristics of Microbubbles near a Vertical Wall. The Proceedings of Mechanical Engineering Congress Japan, 2012, 2012, _J055012-1J055012-3.	0.0	0

#	Article	IF	CITATIONS
19	Motion of Descending Solid Particles and Local Flow Around the Particles in Downward Turbulent Water Duct Flow (Keynote). , 2011 , , .		0
20	Effects of Bubbles, Droplets or Particles on Heat Transfer in Turbulent Channel Flows. Flow, Turbulence and Combustion, 2011, 86, 343-367.	2.6	8
21	Effects of sub-millimeter-bubble injection on transition to turbulence in natural convection boundary layer along a vertical plate in water. Experiments in Fluids, 2011, 51, 701-710.	2.4	9
22	Effects of Local Concentration on Freezing Solutions of Winter Flounder Antifreeze Protein., 2011,,.		1
23	Experimental investigation of water laminar mixed-convection flow with sub-millimeter bubbles in a vertical channel. Experiments in Fluids, 2010, 48, 509-519.	2.4	7
24	Experimental study on turbulent natural convection heat transfer in water with sub-millimeter-bubble injection. Experiments in Fluids, 2010, 49, 613-622.	2.4	23
25	Temperature of the solution of winter flounder antifreeze protein near ice surfaces in a narrow space. Journal of Crystal Growth, 2010, 312, 314-322.	1.5	5
26	Flow and Heat Transfer Characteristics of a Turbulent Natural Convection Flow with Sub-Millimeter Bubbles(Thermal Engineering). 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2009, 75, 1830-1837.	0.2	0
27	Heat transfer enhancement for laminar natural convection along a vertical plate due to sub-millimeter-bubble injection. Experiments in Fluids, 2008, 45, 473-484.	2.4	42
28	Interaction among the twelve-residue segment of antifreeze protein type I, or its mutants, water and a hexagonal ice crystal. Molecular Simulation, 2008, 34, 591-610.	2.0	9
29	Interaction between a twelve-residue segment of antifreeze protein type I, or its mutants, and water molecules. Molecular Simulation, 2008, 34, 309-325.	2.0	5
30	Some Biological Hints on the Control of Heat and Mass Transfer. Journal of Thermal Science and Technology, 2008, 3, 381-390.	1.1	1
31	Effects of Bubble Size on Heat Transfer Enhancement for Laminar Natural Convection by Sub-Millimeter Bubbles. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2008, 74, 2621-2629.	0.2	0
32	Turbulence modification in flow around a periodically deforming film. Journal of Turbulence, 2007, 8, N19.	1.4	2
33	Heat Transfer Enhancement for Laminar Natural Convection due to Micro-bubble Injection. 880-02 Nihon Kikai Gakkai Ronbunshū Transactions of the Japan Society of Mechanical Engineers Series B B-hen, 2007, 73, 1687-1695.	0.2	1
34	PTV investigation of phase interaction in dispersed liquid–liquid two-phase turbulent swirling flow. Experiments in Fluids, 2007, 42, 871-880.	2.4	24
35	An experimental study on turbulent swirling water flow with immiscible droplets. International Journal of Heat and Fluid Flow, 2006, 27, 611-618.	2.4	6
36	TURBULENT SWIRLING WATER FLOW WITH OIL DROPLETS. Multiphase Science and Technology, 2006, 18, 55-72.	0.5	2

3

#	Article	IF	CITATIONS
37	Interaction between near-wall turbulence structure and immiscible droplets falling with wobbling motion in upward water flow. Energy, 2005, 30, 181-195.	8.8	2
38	Heat transfer characteristics of warm water flow with cool immiscible droplets in a vertical pipe. Experimental Thermal and Fluid Science, 2005, 29, 371-381.	2.7	7
39	The modifications of near-wall turbulence structure and heat transfer by immiscible droplets in turbulent liquid–liquid two-phase flow. International Journal of Heat and Fluid Flow, 2004, 25, 471-480.	2.4	4
40	Inhibition of Ice Nucleus Growth in Water by Alanine Dipeptide. Molecular Simulation, 2004, 30, 487-500.	2.0	6
41	Turbulence modification by compliant skin and strata-corneas desquamation of a swimming dolphin. Journal of Turbulence, 2004, 5, .	1.4	19
42	Effects of Alanine Dipeptide on the Growth of an Ice Nucleus in Water. JSME International Journal Series B, 2004, 47, 508-515.	0.3	1
43	Experimental study on the interaction between large scale vortices and particles in liquid–solid two-phase flow. International Journal of Multiphase Flow, 2003, 29, 361-373.	3.4	8
44	Molecular Dynamics Simulation for the Mixture of Water and an Ice Nucleus. Molecular Simulation, 2003, 29, 235-248.	2.0	5
45	Effects of a Droplet on Near-Wall Transport Phenomena in Turbulent Downward Liquid-Liquid Flow. Journal of Enhanced Heat Transfer, 2003, 10, 81-94.	1.1	4
46	Direct numerical simulation of turbulent Couette flow with immiscible droplets. International Journal of Heat and Fluid Flow, 2001, 22, 332-342.	2.4	8
47	3-D PTV measurement on turbulence modification due to an oil droplet in a plane Couette water flow. Journal of Visualization, 2000, 3, 101-113.	1.8	5
48	Direct numerical simulation of the basic phase-interactions in liquid turbulent channel flow with immiscible droplets. Nuclear Engineering and Design, 1997, 175, 49-57.	1.7	5