
Marcus Granegger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3077575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Cavopulmonary Assist Device for Long-Term Therapy of Fontan Patients. Seminars in Thoracic and Cardiovascular Surgery, 2022, 34, 238-248.	0.4	10
2	Incidence, clinical relevance and therapeutic options for outflow graft stenosis in patients with left ventricular assist devices. European Journal of Cardio-thoracic Surgery, 2022, 61, 716-724.	0.6	6
3	Inflow cannula position as risk factor for stroke in patients with HeartMate 3 left ventricular assist devices. Artificial Organs, 2022, 46, 1149-1157.	1.0	10
4	Hemolytic Footprint of Rotodynamic Blood Pumps. IEEE Transactions on Biomedical Engineering, 2022, 69, 2423-2432.	2.5	6
5	When Nothing Goes Right: Risk Factors and Biomarkers of Right Heart Failure after Left Ventricular Assist Device Implantation. Life, 2022, 12, 459.	1.1	6
6	Comparison of device-based therapy options for heart failure with preserved ejection fraction: a simulation study. Scientific Reports, 2022, 12, 5761.	1.6	6
7	Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps. Advanced Theory and Simulations, 2022, 5, .	1.3	5
8	Serial assessment of somatic and cardiovascular development in patients with single ventricle undergoing Fontan procedure. International Journal of Cardiology, 2021, 322, 135-141.	0.8	4
9	The left ventricular assist device as a patient monitoring system. Annals of Cardiothoracic Surgery, 2021, 10, 221-232.	0.6	7
10	Mechanical circulatory support in pediatric patients with biventricular and univentricular hearts. JTCVS Open, 2021, 6, 202-208.	0.2	1
11	Validation of Numerically Predicted Shear Stress-dependent Dissipative Losses Within a Rotary Blood Pump. ASAIO Journal, 2021, 67, 1148-1158.	0.9	3
12	Thrombotic Risk of Rotor Speed Modulation Regimes of Contemporary Centrifugal Continuous-flow Left Ventricular Assist Devices. ASAIO Journal, 2021, 67, 737-745.	0.9	30
13	Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1519-1527.e1.	0.4	24
14	Ventricular Flow Field Visualization During Mechanical Circulatory Support in the Assisted Isolated Beating Heart. Annals of Biomedical Engineering, 2020, 48, 794-804.	1.3	13
15	A Valveless Pulsatile Pump for Heart Failure with Preserved Ejection Fraction: Hemo- and Fluid Dynamic Feasibility. Annals of Biomedical Engineering, 2020, 48, 1821-1836.	1.3	21
16	Intraventricular flow features and cardiac mechano-energetics after mitral valve interventions – feasibility of an isolated heart model. Current Directions in Biomedical Engineering, 2020, 6, .	0.2	0
17	Impact of Infant Positioning on Cardiopulmonary Resuscitation Performance During Simulated Pediatric Cardiac Arrest: A Randomized Crossover Study. Pediatric Critical Care Medicine, 2020, 21, e1076-e1083.	0.2	2
18	Experimental Hydraulic and Mechanical Characterisation of a Double-Flow Implantable Blood Pump. , 2020, , .		0

2

MARCUS GRANEGGER

#	Article	IF	CITATIONS
19	Fluid Dynamics in the HeartMate 3: Influence of the Artificial Pulse Feature and Residual Cardiac Pulsation. Artificial Organs, 2019, 43, 363-376.	1.0	72
20	A long-term mechanical cavopulmonary support device for patients with Fontan circulation. Medical Engineering and Physics, 2019, 70, 9-18.	0.8	18
21	Insights Into Myocardial Oxygen Consumption, Energetics, and Efficiency Under Left Ventricular Assist Device Support Using Noninvasive Pressure-Volume Loops. Circulation: Heart Failure, 2019, 12, e006191.	1.6	9
22	Noninvasive assessment of blood pressure in rotary blood pump recipients using a novel ultrasonic Doppler method. International Journal of Artificial Organs, 2019, 42, 226-232.	0.7	2
23	Comparative analysis of cardiac mechano-energetics in isolated hearts supported by pulsatile or rotary blood pumps. Scientific Reports, 2019, 9, 20058.	1.6	5
24	A Versatile Hybrid Mock Circulation for Hydraulic Investigations of Active and Passive Cardiovascular Implants. ASAIO Journal, 2019, 65, 495-502.	0.9	19
25	Hydraulic Characterization of Implantable Rotary Blood Pumps. IEEE Transactions on Biomedical Engineering, 2019, 66, 1618-1627.	2.5	27
26	Approaches to Establish Extracardiac Total Cavopulmonary Connections in Animal Models—A Review. World Journal for Pediatric & Congenital Heart Surgery, 2019, 10, 81-89.	0.3	5
27	A Valveless Pulsatile Pump for the Treatment of Heart Failure with Preserved Ejection Fraction: A Simulation Study. Cardiovascular Engineering and Technology, 2019, 10, 69-79.	0.7	13
28	Investigation of the Axial Gap Clearance in a Hydrodynamicâ€Passive Magnetically Levitated Rotary Blood Pump Using Xâ€Ray Radiography. Artificial Organs, 2018, 42, 510-515.	1.0	22
29	Cavopulmonary mechanical circulatory support in Fontan patients and the need for physiologic control: A computational study with a closed-loop exercise model. International Journal of Artificial Organs, 2018, 41, 261-268.	0.7	15
30	Blood Damage in Ventricular Assist Devices. International Journal of Artificial Organs, 2016, 39, 147-149.	0.7	11
31	Daily Life Activity in Patients with Left Ventricular Assist Devices. International Journal of Artificial Organs, 2016, 39, 22-27.	0.7	15
32	Interaction of a Transapical Miniaturized Ventricular Assist Device With the Left Ventricle: Hemodynamic Evaluation and Visualization in an Isolated Heart Setup. Artificial Organs, 2016, 40, 1113-1120.	1.0	6
33	A passive beating heart setup for interventional cardiology training. Current Directions in Biomedical Engineering, 2016, 2, 735-739.	0.2	3
34	Continuous Monitoring of Aortic Valve Opening in Rotary Blood Pump Patients. IEEE Transactions on Biomedical Engineering, 2016, 63, 1201-1207.	2.5	29
35	Pump Speed Waveform Analysis to Detect Aortic Valve Opening in Patients on Ventricular Assist Device Support. Artificial Organs, 2015, 39, 704-709.	1.0	21
36	Assessment of Aortic Valve Opening During Rotary Blood Pump Support Using Pump Signals. Artificial Organs, 2014, 38, 290-297.	1.0	25

MARCUS GRANEGGER

#	Article	IF	CITATIONS
37	Continuous Monitoring of Cardiac Rhythms in Left Ventricular Assist Device Patients. Artificial Organs, 2014, 38, 191-198.	1.0	30
38	Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: A computer-simulation study. Journal of Thoracic and Cardiovascular Surgery, 2013, 145, 1352-1358.	0.4	24
39	Preference of infant position in paediatric life support. Resuscitation, 2013, 84, S75.	1.3	0
40	Investigation of Hemodynamics in the Assisted Isolated Porcine Heart. International Journal of Artificial Organs, 2013, 36, 878-886.	0.7	14
41	Development of a Pump Flow Estimator for Rotary Blood Pumps to Enhance Monitoring of Ventricular Function. Artificial Organs, 2012, 36, 691-699.	1.0	62
42	Evaluation of Left Ventricular Relaxation in Rotary Blood Pump Recipients Using the Pump Flow Waveform: A Simulation Study. Artificial Organs, 2012, 36, 470-478.	1.0	22
43	The Efficacy of Spontaneous and Controlled Ventilation With Various Cricothyrotomy Devices: A Quantitative In Vitro Assessment in a Model Lung. Journal of Trauma, 2011, 71, 886-892.	2.3	11
44	Use of independent component analysis for reducing CPR artefacts in human emergency ECGs. Resuscitation, 2011, 82, 79-84.	1.3	13
45	Human ECCs corrupted with real CPR artefacts in an animal model: Cenerating a database to evaluate and refine algorithms for eliminating CPR artefacts. Resuscitation, 2010, 81, 730-736.	1.3	4
46	Reduction of CPR artifacts in the ventricular fibrillation ECG by coherent line removal. BioMedical Engineering OnLine, 2010, 9, 2.	1.3	25
47	Strong corruption of electrocardiograms caused by cardiopulmonary resuscitation reduces efficiency of two-channel methods for removing motion artefacts in non-shockable rhythms. Resuscitation, 2009, 80, 1301-1307.	1.3	25