Marcus Granegger

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/3077575/publications.pdf
Version: 2024-02-01

5 Continuous Monitoring of Aortic Valve Opening in Rotary Blood Pump Patients. IEEE Transactions on
$7 \quad$ efficiency of two-channel methods for removing motion artefacts in non-shockable rhythms. Resuscitation, 2009, 80, 1301-1307.8 Reduction of CPR artifacts in the ventricular fibrillation ECG by coherent line removal. BioMedical8 Engineering OnLine, 2010, 9, 2.
9 Assessment of Aortic Valve Opening During Rotary Blood Pump Support Using Pump Signals. Artificial Organs, 2014, 38, 290-297.
Use of continuous flow ventricular assist devices in patients with heart failure and a normal 10 ejection fraction: A computer-simulation study. Journal of Thoracic and Cardiovascular Surgery, 2013, 0.4 24
145, 1352-1358.
11 Blood trauma potential of the HeartWare Ventricular Assist Device in pediatric patients. Journal of
Thoracic and Cardiovascular Surgery, 2020, 159, 1519-1527.e1.24
12 Evaluation of Left Ventricular Relaxation in Rotary Blood Pump Recipients Using the Pump FlowWaveform: A Simulation Study. Artificial Organs, 2012, 36, 470-478.1.022
13 Investigation of the Axial Gap Clearance in a Hydrodynamicâ€Passive Magnetically Levitated Rotary Blood
Pump Using Xâ€Ray Radiography. Artificial Organs, 2018, 42, 510-515.1.022Pump Speed Waveform Analysis to Detect Aortic Valve Opening in Patients on Ventricular Assist Device1.021Support. Artificial Organs, 2015, 39, 704-709.1.321
A Valveless Pulsatile Pump for Heart Failure with Preserved Ejection Fraction: Hemo- and Fluid
Dynamic Feasibility. Annals of Biomedical Engineering, 2020, 48, 1821-1836. 15A Versatile Hybrid Mock Circulation for Hydraulic Investigations of Active and Passive CardiovascularImplants. ASAIO Journal, 2019, 65, 495-502.

19	Cavopulmonary mechanical circulatory support in Fontan patients and the need for physiologic control: A computational study with a closed-loop exercise model. International Journal of Artificial Organs, 2018, 41, 261-268.	0.7	15
20	Investigation of Hemodynamics in the Assisted Isolated Porcine Heart. International Journal of Artificial Organs, 2013, 36, 878-886.	0.7	14
21	Use of independent component analysis for reducing CPR artefacts in human emergency ECGs. Resuscitation, 2011, 82, 79-84.	1.3	13
22	A Valveless Pulsatile Pump for the Treatment of Heart Failure with Preserved Ejection Fraction: A Simulation Study. Cardiovascular Engineering and Technology, 2019, 10, 69-79.	0.7	13
23	Ventricular Flow Field Visualization During Mechanical Circulatory Support in the Assisted Isolated Beating Heart. Annals of Biomedical Engineering, 2020, 48, 794-804.	1.3	13
24	The Efficacy of Spontaneous and Controlled Ventilation With Various Cricothyrotomy Devices: A Quantitative In Vitro Assessment in a Model Lung. Journal of Trauma, 2011, 71, 886-892.	2.3	11
25	Blood Damage in Ventricular Assist Devices. International Journal of Artificial Organs, 2016, 39, 147-149.	0.7	11

A Cavopulmonary Assist Device for Long-Term Therapy of Fontan Patients. Seminars in Thoracic and Cardiovascular Surgery, 2022, 34, 238-248.
$0.4 \quad 10$
Inflow cannula position as risk factor for stroke in patients with HeartMate 3 left ventricular assist
devices. Artificial Organs, 2022, 46, 1149-1157.
Insights Into Myocardial Oxygen Consumption, Energetics, and Efficiency Under Left Ventricular Assist Device Support Using Noninvasive Pressure-Volume Loops. Circulation: Heart Failure, 2019, 12, e006191.
29 The left ventricular assist device as a patient monitoring system. Annals of Cardiothoracic Surgery, 2021, 10, 221-232.

$0.6 \quad 7$

Interaction of a Transapical Miniaturized Ventricular Assist Device With the Left Ventricle:
30 Hemodynamic Evaluation and Visualization in an Isolated Heart Setup. Artificial Organs, 2016, 40,
1.0
1.6

9

1113-1120.

$$
\begin{aligned}
& \text { Incidence, clinical relevance and therapeutic options for outflow graft stenosis in patients with left } \\
& \text { ventricular assist devices. European Journal of Cardio-thoracic Surgery, 2022, 61, 716-724. }
\end{aligned}
$$

$0.6 \quad 6$

32 Hemolytic Footprint of Rotodynamic Blood Pumps. IEEE Transactions on Biomedical Engineering, 2022, 69, 2423-2432.
2.5

6

> When Nothing Goes Right: Risk Factors and Biomarkers of Right Heart Failure after Left Ventricular
> Assist Device Implantation. Life, 2022, $12,459$.
1.1

Comparison of device-based therapy options for heart failure with preserved ejection fraction: a
simulation study. Scientific Reports, 2022, 12, 5761.
1.6

6

Comparative analysis of cardiac mechano-energetics in isolated hearts supported by pulsatile or
rotary blood pumps. Scientific Reports, $2019,9,20058$.
1.6
37

Linking Hydraulic Properties to Hemolytic Performance of Rotodynamic Blood Pumps. Advanced Theory and Simulations, 2022, 5, .

Human ECGs corrupted with real CPR artefacts in an animal model: Generating a database to evaluate
Validation of Numerically Predicted Shear Stress-dependent Dissipative Losses Within a Rotary Blood
Pump. ASAIO Journal, 2021, 67, 1148-1158.

42 Noninvasive assessment of blood pressure in rotary blood pump recipients using a novel ultrasonic
Doppler method. International Journal of Artificial Organs, 2019, 42, 226-232.

Impact of Infant Positioning on Cardiopulmonary Resuscitation Performance During Simulated
43 Pediatric Cardiac Arrest: A Randomized Crossover Study. Pediatric Critical Care Medicine, 2020, 21,

