Targo Kalamees

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3077331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hygrothermal performance of a brick wall with interior insulation in cold climate: Vapour open versus vapour tight approach. Journal of Building Physics, 2022, 46, 3-35.	1.2	5
2	The impact of the technical requirements of the renovation grant on the ventilation and indoor air quality in apartment buildings. Building and Environment, 2022, 210, 108698.	3.0	11
3	Designing highly insulated cross-laminated timber external walls in terms of hygrothermal performance: Field measurements and simulations. Building and Environment, 2022, 212, 108805.	3.0	13
4	Wetting circumstances, expected moisture content, and drying performance of CLT end-grain edges based on field measurements and laboratory analysis. Building and Environment, 2022, 221, 109245.	3.0	7
5	Field measurements and simulation of an massive wood panel envelope with ETICS. Wood Material Science and Engineering, 2021, 16, 27-34.	1.1	5
6	Commissioning of moisture safety of nZEB renovation with prefabricated timber frame insulation wall elements. Wood Material Science and Engineering, 2021, 16, 110-117.	1.1	14
7	Towards Improving the Durability and Overall Performance of PV-ETICS by Application of a PCM Layer. Applied Sciences (Switzerland), 2021, 11, 4667.	1.3	6
8	The Effect of Prestressing and Temperature on Tensile Strength of Basalt Fiber-Reinforced Plywood. Materials, 2021, 14, 4701.	1.3	3
9	The effect of flanking element length in thermal bridge calculation and possible simplifications to account for combined thermal bridges in well insulated building envelopes. Energy and Buildings, 2021, 252, 111397.	3.1	6
10	Airtightness of cross-laminated timber envelopes: Influence of moisture content, indoor humidity, orientation, and assembly. Journal of Building Engineering, 2021, 44, 102610.	1.6	9
11	Heat Loss Due to Domestic Hot Water Pipes. Energies, 2021, 14, 6446.	1.6	7
12	Circularity concepts for offsite prefabricated energy renovation of apartment buildings. Journal of Physics: Conference Series, 2021, 2069, 012074.	0.3	1
13	Hygrothermal performance of a massive natural stone masonry wall insulated from the internal side with hemp concrete – field measurements in cold climate. Journal of Physics: Conference Series, 2021, 2069, 012068.	0.3	0
14	Realisation of energy performance targets of an old apartment building renovated to nZEB. Energy, 2020, 194, 116874.	4.5	42
15	Moisture control strategies of habitable basements in cold climates. Building and Environment, 2020, 169, 106572.	3.0	10
16	Failure analysis of a spray polyurethane foam roofing system. Journal of Building Engineering, 2020, 32, 101752.	1.6	2
17	Cost and Energy Reduction of a New nZEB Wooden Building. Energies, 2020, 13, 3570.	1.6	11
18	A method to develop energy activated ETICS. E3S Web of Conferences, 2020, 172, 21006.	0.2	4

#	Article	IF	CITATIONS
19	Growth rate of solar thermal systems in Baltic States: Slow but steady wins the race?. Energy Sources, Part B: Economics, Planning and Policy, 2020, 15, 423-435.	1.8	5
20	Thermal bridge effect of vertical diagonal tie connectors in precast concrete sandwich panels: an experimental and computational study. E3S Web of Conferences, 2020, 172, 08001.	0.2	2
21	Cost reduction of the new NZEB Wooden building – case study of the kindergarten in Estonia. E3S Web of Conferences, 2020, 172, 13002.	0.2	Ο
22	Moisture dry-out from steel faced insulated sandwich panels. E3S Web of Conferences, 2020, 172, 17007.	0.2	4
23	Development of prefabricated insulation elements for buildings with aerated autoclaved concrete walls. E3S Web of Conferences, 2020, 172, 18001.	0.2	1
24	Preliminary assessment of preconditions to deliver carbon neutrality in apartment buildings by 2050. E3S Web of Conferences, 2020, 172, 18004.	0.2	3
25	The integration of selected technology to energy activated ETICS - theoretical approach. E3S Web of Conferences, 2020, 172, 21004.	0.2	2
26	The influence of heat loss from pipes in an unheated basement on the heating energy consumption of an entire typical apartment building. E3S Web of Conferences, 2020, 172, 12005.	0.2	1
27	Laboratory tests and modelling of mineral wool insulated steel sandwich panels. E3S Web of Conferences, 2020, 172, 17006.	0.2	1
28	Driving decarbonisation of the EU building stock by enhancing a consumer centred and locally based circular renovation process. E3S Web of Conferences, 2020, 172, 18006.	0.2	4
29	A new method to estimate point thermal transmittance based on combined two-dimensional heat flow calculation. E3S Web of Conferences, 2020, 172, 08005.	0.2	5
30	Identification and improvement of critical joints in CLT construction without weather protection. E3S Web of Conferences, 2020, 172, 10002.	0.2	6
31	Analysis of causes of the end of service life of a spray polyurethane foam and polyurea roof. E3S Web of Conferences, 2020, 172, 15002.	0.2	1
32	Moisture Dry-Out Capability of Steel-Faced Mineral Wool Insulated Sandwich Panels. Sustainability, 2020, 12, 9020.	1.6	2
33	Development and Performance Assessment of Prefabricated Insulation Elements for Deep Energy Renovation of Apartment Buildings. Energies, 2020, 13, 1709.	1.6	10
34	How well are energy performance objectives being achieved in renovated apartment buildings in Estonia?. Energy and Buildings, 2019, 199, 332-341.	3.1	32
35	Air Leakage of Joints Filled with Polyurethane Foam. Buildings, 2019, 9, 172.	1.4	10
36	Renovation of apartment buildings with prefabricated modular panels. E3S Web of Conferences, 2019, 111, 03023.	0.2	6

#	Article	IF	CITATIONS
37	Commissioning of thermal performance of prefabricated timber frame insulation elements for nZEB renovation. MATEC Web of Conferences, 2019, 282, 02004.	0.1	Ο
38	Indoor climate loads for dwellings in different cold climates to assess hygrothermal performance of building envelopes. Canadian Journal of Civil Engineering, 2019, 46, 963-968.	0.7	7
39	The effects of production technologies on the air permeability and crack development of cross-laminated timber. Journal of Building Physics, 2019, 43, 171-186.	1.2	8
40	Indoor climate and energy performance in nearly zero energy day care centers and school buildings. E3S Web of Conferences, 2019, 111, 02003.	0.2	2
41	Influence of interior layer properties to moisture dry-out of CLT walls. Canadian Journal of Civil Engineering, 2019, 46, 1001-1009.	0.7	10
42	Energy Performance, Indoor Air Quality and Comfort in New Nearly Zero Energy Day-care Centres in Northern Climatic Conditions. Journal of Sustainable Architecture and Civil Engineering, 2019, 24, 7-16.	0.3	5
43	Development of Airtightness of Estonian Wooden Buildings. Journal of Sustainable Architecture and Civil Engineering, 2019, 24, 36-43.	0.3	6
44	Influence of Window Details on the Energy Performance of an nZEB. Journal of Sustainable Architecture and Civil Engineering, 2019, 24, 61-70.	0.3	2
45	A case study on the construction of a CLT building without a preliminary roof. Journal of Sustainable Architecture and Civil Engineering, 2019, 25, 53-62.	0.3	6
46	Guest Editor Preface. Journal of Sustainable Architecture and Civil Engineering, 2019, 24, 5-6.	0.3	0
47	Internal moisture excess of residential buildings in Finland. Journal of Building Physics, 2018, 42, 239-258.	1.2	19
48	Indoor hygrothermal loads for the deterministic and stochastic design of the building envelope for dwellings in cold climates. Journal of Building Physics, 2018, 41, 547-577.	1.2	38
49	The Influence of Energy Renovation on the Change of Indoor Temperature and Energy Use. Energies, 2018, 11, 3179.	1.6	16
50	The effects of production technologies on the air permeability properties of cross laminated timber. , 2018, , .		1
51	Long term measurements and HAM modelling of an interior insulation solution for an office building in cold climate. , 2018, , .		1
52	Air leakage levels in timber frame building envelope joints. Building and Environment, 2017, 116, 121-129.	3.0	48
53	Assessment of durability of environmentally friendly wood-based panels. Energy Procedia, 2017, 132, 207-212.	1.8	8
54	Calculation and compliance procedures of thermal bridges in energy calculations in various European countries. Energy Procedia, 2017, 132, 27-32.	1.8	17

#	Article	IF	CITATIONS
55	Method to divide heating energy in energy efficient building without direct measuring. Energy Procedia, 2017, 132, 45-50.	1.8	3
56	A simple adaptive ventilation controller for mediaeval church. Energy Procedia, 2017, 132, 957-962.	1.8	4
57	Influencing factors of moisture measurement when using microwave reflection method. Energy Procedia, 2017, 132, 159-164.	1.8	5
58	Airtightness improvement solutions for log wall joints. Energy Procedia, 2017, 132, 861-866.	1.8	3
59	Performance of ventilation in Estonian apartment buildings. Energy Procedia, 2017, 132, 963-968.	1.8	25
60	nZEB Renovation with Prefabricated Modular Panels. Energy Procedia, 2017, 132, 1006-1011.	1.8	19
61	Effect of freezing and thawing on the performance of "capillary active―insulation systems: a comparison of results from climate chamber study to HAM modelling. Energy Procedia, 2017, 132, 525-530.	1.8	12
62	Impact of cracks to the hygrothermal properties of CLT water vapour resistance and air permeability. Energy Procedia, 2017, 132, 741-746.	1.8	14
63	CASE-STUDY ANALYSIS OF CONCRETE LARGE-PANEL APARTMENT BUILDING AT PRE- AND POST LOW-BUDGET ENERGY-RENOVATION. Journal of Civil Engineering and Management, 2016, 23, 67-75.	1.9	27
64	IMPACT OF LINEAR THERMAL BRIDGES ON THERMAL TRANSMITTANCE OF RENOVATED APARTMENT BUILDINGS. Journal of Civil Engineering and Management, 2016, 23, 96-104.	1.9	44
65	Hygrothermal Performance of Highly Insulated Timber-frame External Wall. Energy Procedia, 2016, 96, 685-695.	1.8	22
66	Influence of Moisture Dry-out on Hygrothermal Performance of Prefabricated Modular Renovation Elements. Energy Procedia, 2016, 96, 745-755.	1.8	14
67	Impact of ETICS on Corrosion Propagation of Concrete Facade. Energy Procedia, 2016, 96, 67-76.	1.8	6
68	Estonian Grant Scheme for Renovating Apartment Buildings. Energy Procedia, 2016, 96, 628-637.	1.8	24
69	Effects of Energy Retrofits on Indoor Air Quality in Three Northern European Countries. Energy Procedia, 2016, 96, 253-259.	1.8	22
70	Ventilation System Design in Three European Geo Cluster. Energy Procedia, 2016, 96, 285-293.	1.8	12
71	Integrated Design of Museum's Indoor Climate in Medieval Episcopal Castle of Haapsalu. Energy Procedia, 2016, 96, 592-600.	1.8	14
72	Overview of Damage to Medieval Rural Churches in Estonia. Building Pathology and Rehabilitation, 2016, , 47-68.	0.1	2

#	Article	IF	CITATIONS
73	Adaptive ventilation for climate control in a medieval church in cold climate. International Journal of Ventilation, 2016, 15, 1-14.	0.2	12
74	Design of the first net-zero energy buildings in Estonia. Science and Technology for the Built Environment, 2016, 22, 1039-1049.	0.8	12
75	Evaluation of the criticality of thermal bridges. Journal of Building Pathology and Rehabilitation, 2016, 1, 1.	0.7	15
76	Avoiding mould growth in an interiorly insulated log wall. Building and Environment, 2016, 105, 104-115.	3.0	28
77	Indoor hygrothermal condition and user satisfaction in naturally ventilated historic houses in temperate humid continental climate around the Baltic Sea. Architectural Science Review, 2016, 59, 53-67.	1.1	2
78	The effect of thermal transmittance of building envelope and material selection of wind barrier on moisture safety of timber frame exterior wall. Journal of Building Engineering, 2016, 6, 29-38.	1.6	34
79	Diagnosis of Moisture Movements in Massive Dolostone Walls of Medieval Churches. Building Pathology and Rehabilitation, 2016, , 69-90.	0.1	2
80	Retrofit cost-effectiveness: Estonian apartment buildings. Building Research and Information, 2016, 44, 920-934.	2.0	30
81	The Influence of Indoor Climate Control on Risk for Damages in Naturally Ventilated Historic Churches in Cold Climate. International Journal of Architectural Heritage, 2016, 10, 486-498.	1.7	32
82	Simulated Influence of Indoor Climate and Ventilation on Schoolwork Performance in Estonian Manor Schools. International Journal of Ventilation, 2015, 14, 153-164.	0.2	8
83	Air Leakage of Concrete Floor and Foundation Junctions. Energy Procedia, 2015, 78, 2046-2051.	1.8	5
84	Potential for Finance and Energy Savings of Detached Houses in Estonia. Energy Procedia, 2015, 78, 907-912.	1.8	7
85	Method for Assessment of Energy Retrofit Measures in Milieu Valuable Buildings. Energy Procedia, 2015, 78, 1027-1032.	1.8	8
86	Airtightness, Air Exchange and Energy Performance in Historic Residential Buildings with Different Structures. International Journal of Ventilation, 2015, 14, 11-26.	0.2	12
87	nZEB Retrofit of a Concrete Large Panel Apartment Building. Energy Procedia, 2015, 78, 985-990.	1.8	30
88	Reliability of Interior Thermal Insulation as a Retrofit Measure in Historic Wooden Apartment Buildings in Cold Climate. Energy Procedia, 2015, 78, 871-876.	1.8	14
89	Hygrothermal Performance of a Massive Stone Wall with Interior Insulation: An In-situ Study for Developing a Retrofit Measure. Energy Procedia, 2015, 78, 195-200.	1.8	5
90	Hourly test reference weather data in the changing climate of Finland for building energy simulations. Data in Brief, 2015, 4, 162-169.	0.5	14

#	Article	IF	CITATIONS
91	Hygrothermal performance of internally insulated brick wall in cold climate: A case study in a historical school building. Journal of Building Physics, 2015, 38, 444-464.	1.2	52
92	Energy demand for the heating and cooling of residential houses in Finland in a changing climate. Energy and Buildings, 2015, 99, 104-116.	3.1	88
93	Field survey of overheating problems in Estonian apartment buildings. Architectural Science Review, 2015, 58, 1-10.	1.1	36
94	Energy use and indoor climate of conservation heating, dehumidification and adaptive ventilation for the climate control of a mediaeval church in a cold climate. Energy and Buildings, 2015, 108, 61-71.	3.1	48
95	Energy and investment intensity of integrated renovation and 2030 cost optimal savings. Energy and Buildings, 2014, 75, 51-59.	3.1	46
96	Renovation alternatives to improve energy performance of historic rural houses in the Baltic Sea region. Energy and Buildings, 2014, 77, 58-66.	3.1	60
97	Analysis of energy economic renovation for historic wooden apartment buildings in cold climates. Applied Energy, 2014, 115, 540-548.	5.1	86
98	Cost effectiveness of energy performance improvements in Estonian brick apartment buildings. Energy and Buildings, 2014, 77, 313-322.	3.1	67
99	Economic viability of energy-efficiency measures in educational buildings in Finland. Advances in Building Energy Research, 2013, 7, 120-127.	1.1	5
100	Cost optimal and nearly zero energy performance requirements for buildings in Estonia. Estonian Journal of Engineering, 2013, 19, 183.	0.3	39
101	Financial viability of energy-efficiency measures in a new detached house design in Finland. Applied Energy, 2012, 92, 76-83.	5.1	33
102	Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard. Energy and Buildings, 2012, 47, 53-60.	3.1	134
103	Cost optimal and nearly zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB national implementation. Energy and Buildings, 2011, 43, 3279-3288.	3.1	215
104	Moisture Convection Performance of External Walls and Roofs. Journal of Building Physics, 2010, 33, 225-247.	1.2	23
105	Measured and simulated air pressure conditions in Finnish residential buildings. Building Services Engineering Research and Technology, 2010, 31, 177-190.	0.9	27
106	The effect of combining a relative-humidity-sensitive ventilation system with the moisture-buffering capacity of materials on indoor climate and energy efficiency of buildings. Building and Environment, 2009, 44, 515-524.	3.0	166
107	Building leakage, infiltration, and energy performance analyses for Finnish detached houses. Building and Environment, 2009, 44, 377-387.	3.0	165
108	The effects of ventilation systems and building fabric on the stability of indoor temperature and humidity in Finnish detached houses. Building and Environment, 2009, 44, 1643-1650.	3.0	53

#	Article	IF	CITATIONS
109	A Comparison of Measured and Simulated Air Pressure Conditions of a Detached House in a Cold Climate. Journal of Building Physics, 2008, 32, 67-89.	1.2	31
110	Airflow performance of ventilated sub flooring system. Building and Environment, 2007, 42, 3708-3716.	3.0	0
111	Potential effects of permeable and hygroscopic lightweight structures on thermal comfort and perceived IAQ in a cold climate. Indoor Air, 2007, 17, 37-49.	2.0	27
112	Air tightness and air leakages of new lightweight single-family detached houses in Estonia. Building and Environment, 2007, 42, 2369-2377.	3.0	142
113	Indoor Climate Conditions and Ventilation Performance in Estonian Lightweight Detached Houses. Indoor and Built Environment, 2006, 15, 555-569.	1.5	16
114	Indoor Humidity Loads and Moisture Production in Lightweight Timber-frame Detached Houses. Journal of Building Physics, 2006, 29, 219-246.	1.2	52
115	Hygrothermal calculations and laboratory tests on timber-framed wall structures. Building and Environment, 2003, 38, 689-697.	3.0	65
116	Failure analysis of 10 year used wooden building. Engineering Failure Analysis, 2002, 9, 635-643.	1.8	10
117	Performance of Heat Recovery Ventilation System with Ground Source Brine Heat Exchanger Pre-Heating System in the Context of nZEB. , 0, , .		0
118	Compliance with Summer Thermal Comfort Requirements in Apartment Buildings. , 0, , .		0