
Kasey C Vickers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/307725/publications.pdf Version: 2024-02-01

KASEV C VICKEDS

#	Article	IF	CITATIONS
1	VAP-A and its binding partner CERT drive biogenesis of RNA-containing extracellular vesicles at ER membrane contact sites. Developmental Cell, 2022, 57, 974-994.e8.	7.0	49
2	Elucidation of physico-chemical principles of high-density lipoprotein–small RNA binding interactions. Journal of Biological Chemistry, 2022, 298, 101952.	3.4	4
3	Apolipoprotein Aâ€i in mouse cerebrospinal fluid derives from the liver and intestine via plasma highâ€density lipoproteins assembled by ABCA1 and LCAT. FEBS Letters, 2021, 595, 773-788.	2.8	10
4	Plasma miRNAs improve the prediction of coronary atherosclerosis in patients with rheumatoid arthritis. Clinical Rheumatology, 2021, 40, 2211-2219.	2.2	24
5	Macrophage SR-BI modulates autophagy via VPS34 complex and PPARα transcription of Tfeb in atherosclerosis. Journal of Clinical Investigation, 2021, 131, .	8.2	41
6	HDL-small RNA Export, Transport, and Functional Delivery in Atherosclerosis. Current Atherosclerosis Reports, 2021, 23, 38.	4.8	27
7	High-Density Lipoproteins in Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 8201.	4.1	9
8	Profile of Podocyte Translatome During Development of Type 2 and Type 1 Diabetic Nephropathy Using Podocyte-Specific TRAP mRNA RNA-seq. Diabetes, 2021, 70, 2377-2390.	0.6	8
9	Kidney injury-mediated disruption of intestinal lymphatics involves dicarbonyl-modified lipoproteins. Kidney International, 2021, 100, 585-596.	5.2	11
10	Myeloperoxidase-induced modification of HDL by isolevuglandins inhibits paraoxonase-1 activity. Journal of Biological Chemistry, 2021, 297, 101019.	3.4	13
11	Depletion of METTL3 alters cellular and extracellular levels of miRNAs containing m6A consensus sequences. Heliyon, 2021, 7, e08519.	3.2	7
12	Development and Validation of a MicroRNA Panel to Differentiate Between Patients with Rheumatoid Arthritis or Systemic Lupus Erythematosus and Controls. Journal of Rheumatology, 2020, 47, 188-196.	2.0	33
13	microRNA-367-3p regulation of GPRC5A is suppressed in ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1300-1315.	4.3	12
14	The Endogenous Plasma Small RNAome of Rheumatoid Arthritis. ACR Open Rheumatology, 2020, 2, 97-105.	2.1	16
15	Palmitate induces apoptotic cell death and inflammasome activation in human placental macrophages. Placenta, 2020, 90, 45-51.	1.5	16
16	Circulating microbial small RNAs are altered in patients with rheumatoid arthritis. Annals of the Rheumatic Diseases, 2020, 79, 1557-1564.	0.9	9
17	Pervasive Small RNAs in Cardiometabolic Research: Great Potential Accompanied by Biological and Technical Barriers. Diabetes, 2020, 69, 813-822.	0.6	3
18	High-density lipoproteins induce miR-223–3p biogenesis and export from myeloid cells: Role of scavenger receptor BI-mediated lipid transfer. Atherosclerosis, 2019, 286, 20-29.	0.8	22

KASEY C VICKERS

#	Article	IF	CITATIONS
19	Beta cell secretion of miR-375 to HDL is inversely associated with insulin secretion. Scientific Reports, 2019, 9, 3803.	3.3	35
20	Transfer of Functional Cargo in Exomeres. Cell Reports, 2019, 27, 940-954.e6.	6.4	255
21	Dual inhibition of endothelial miR-92a-3p and miR-489-3p reduces renal injury-associated atherosclerosis. Atherosclerosis, 2019, 282, 121-131.	0.8	55
22	MiR-29 Regulates de novo Lipogenesis in the Liver and Circulating Triglyceride Levels in a Sirt1-Dependent Manner. Frontiers in Physiology, 2019, 10, 1367.	2.8	12
23	Membrane-bound Gaussia luciferase as a tool to track shedding of membrane proteins from the surface of extracellular vesicles. Scientific Reports, 2019, 9, 17387.	3.3	17
24	Integrative roles of microRNAs in lipid metabolism and dyslipidemia. Current Opinion in Lipidology, 2019, 30, 165-171.	2.7	18
25	Loss of 2 Akt (Protein Kinase B) Isoforms in Hematopoietic Cells Diminished Monocyte and Macrophage Survival and Reduces Atherosclerosis in <i>Ldl</i> Receptor-Null Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 156-169.	2.4	12
26	MicroRNAâ€129â€5p is regulated by choline availability and controls EGF receptor synthesis and neurogenesis in the cerebral cortex. FASEB Journal, 2019, 33, 3601-3612.	0.5	17
27	The long noncoding RNA CHROME regulates cholesterol homeostasis in primates. Nature Metabolism, 2019, 1, 98-110.	11.9	104
28	Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA Strategic Workshop. JCI Insight, 2018, 3, .	5.0	41
29	Intestinal bile acid sequestration improves glucose control by stimulating hepatic miR-182-5p in type 2 diabetes. American Journal of Physiology - Renal Physiology, 2018, 315, G810-G823.	3.4	18
30	Bioinformatic analysis of endogenous and exogenous small RNAs on lipoproteins. Journal of Extracellular Vesicles, 2018, 7, 1506198.	12.2	60
31	Comprehensive evaluation of extracellular small RNA isolation methods from serum in high throughput sequencing. BMC Genomics, 2017, 18, 50.	2.8	28
32	MicroRNAs and tRNA-derived fragments predict the transformation of myelodysplastic syndromes to acute myeloid leukemia. Leukemia and Lymphoma, 2017, 58, 2144-2155.	1.3	26
33	Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation. Cell Metabolism, 2017, 25, 1362-1373.e5.	16.2	153
34	Net cholesterol efflux capacity of HDL enriched serum and coronary atherosclerosis in rheumatoid arthritis. IJC Metabolic & Endocrine, 2016, 13, 6-11.	0.5	15
35	HDL and microRNA therapeutics in cardiovascular disease. , 2016, 168, 43-52.		31
36	Porous Silicon and Polymer Nanocomposites for Delivery of Peptide Nucleic Acids as Antiâ€MicroRNA Therapies. Advanced Materials, 2016, 28, 7984-7992.	21.0	56

KASEY C VICKERS

#	Article	IF	CITATIONS
37	Isolation of High-density Lipoproteins for Non-coding Small RNA Quantification. Journal of Visualized Experiments, 2016, , .	0.3	28
38	Extending gene ontology in the context of extracellular RNA and vesicle communication. Journal of Biomedical Semantics, 2016, 7, 19.	1.6	24
39	Effect of Drug Therapy on Net Cholesterol Efflux Capacity of Highâ€Density Lipoprotein–Enriched Serum in Rheumatoid Arthritis. Arthritis and Rheumatology, 2016, 68, 2099-2105.	5.6	35
40	Lipoprotein carriers of microRNAs. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 2069-2074.	2.4	103
41	Meeting report: discussions and preliminary findings on extracellular RNA measurement methods from laboratories in the NIH Extracellular RNA Communication Consortium. Journal of Extracellular Vesicles, 2015, 4, 26533.	12.2	51
42	Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes. BMC Genomics, 2015, 16, 727.	2.8	42
43	KRAS-dependent sorting of miRNA to exosomes. ELife, 2015, 4, e07197.	6.0	296
44	Transcriptomic Analysis of Chronic Hepatitis B and C and Liver Cancer Reveals MicroRNA-Mediated Control of Cholesterol Synthesis Programs. MBio, 2015, 6, e01500-15.	4.1	39
45	Dysfunctional high-density lipoproteins in children with chronic kidney disease. Metabolism: Clinical and Experimental, 2015, 64, 263-273.	3.4	54
46	Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Scientific Reports, 2015, 5, 12911.	3.3	66
47	Robust passive and active efflux of cellular cholesterol to a designer functional mimic of high density lipoprotein. Journal of Lipid Research, 2015, 56, 972-985.	4.2	39
48	Utility of Select Plasma MicroRNA for Disease and Cardiovascular Risk Assessment in Patients with Rheumatoid Arthritis. Journal of Rheumatology, 2015, 42, 1746-1751.	2.0	48
49	Mining diverse small RNA species in the deep transcriptome. Trends in Biochemical Sciences, 2015, 40, 4-7.	7.5	60
50	microRNAs in the onset and development of cardiovascular disease. Clinical Science, 2014, 126, 183-194.	4.3	94
51	Human Scavenger Receptor Class B Type I Variants, Lipid Traits, and Cardiovascular Disease. Circulation: Cardiovascular Genetics, 2014, 7, 735-737.	5.1	5
52	Macrophage deficiency of Akt2 reduces atherosclerosis in Ldlr null mice. Journal of Lipid Research, 2014, 55, 2296-2308.	4.2	57
53	Coenzyme Q10 Increases Cholesterol Efflux and Inhibits Atherosclerosis Through MicroRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1795-1797.	2.4	22
54	MicroRNA-223 coordinates cholesterol homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14518-14523.	7.1	216

KASEY C VICKERS

#	Article	IF	CITATIONS
55	HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nature Communications, 2014, 5, 3292.	12.8	343
56	MicroRNA-29 Fine-tunes the Expression of Key FOXA2-Activated Lipid Metabolism Genes and Is Dysregulated in Animal Models of Insulin Resistance and Diabetes. Diabetes, 2014, 63, 3141-3148.	0.6	105
57	HDL and cholesterol: life after the divorce?. Journal of Lipid Research, 2014, 55, 4-12.	4.2	72
58	MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology, 2013, 57, 533-542.	7.3	196
59	Intercellular Transport of MicroRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 186-192.	2.4	336
60	Complexity of microRNA function and the role of isomiRs in lipid homeostasis. Journal of Lipid Research, 2013, 54, 1182-1191.	4.2	46
61	Small RNA Overcomes the Challenges of Therapeutic Targeting of Microsomal Triglyceride Transfer Protein. Circulation Research, 2013, 113, 1189-1191.	4.5	17
62	Lipid-based carriers of microRNAs and intercellular communication. Current Opinion in Lipidology, 2012, 23, 91-97.	2.7	272
63	MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 2011, 13, 423-433.	10.3	2,395
64	MicroRNAs in atherosclerosis and lipoprotein metabolism. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 150-155.	2.3	68
65	The Role of Noncoding "Junk DNA―in Cardiovascular Disease. Clinical Chemistry, 2010, 56, 1518-1520.	3.2	2