Groenen Serrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076856/publications.pdf

Version: 2024-02-01

			331670	361022	
37	1,910		21	35	
papers	citations		h-index	g-index	
		. '			
37	37		37	2038	
all docs	docs citations		times ranked	citing authors	

#	Article	IF	CITATIONS
1	A critical review on the electrochemical production and use of peroxo-compounds. Current Opinion in Electrochemistry, 2021, 27, 100679.	4.8	24
2	Electrochemical Degradation of Crystal Violet Using Ti/Pt/SnO2 Electrode. Applied Sciences (Switzerland), 2021, 11, 8401.	2.5	12
3	On the Role of the Cathode for the Electro-Oxidation of Perfluorooctanoic Acid. Catalysts, 2020, 10, 902.	3 . 5	16
4	Study of the degradation of an organophosphorus pesticide using electrogenerated hydroxyl radicals or heat-activated persulfate. Separation and Purification Technology, 2019, 208, 27-33.	7.9	54
5	Boronâ€Doped Diamond as an Allâ€Inâ€One System for the Mineralization and Detection of Lead in Waters. ChemElectroChem, 2019, 6, 1225-1228.	3.4	7
6	Indirect electrochemical oxidation of 2,4-dichlorophenoxyacetic acid using electrochemically-generated persulfate. Chemosphere, 2018, 204, 163-169.	8.2	65
7	An experimental and modelling study of the electrochemical oxidation of pharmaceuticals using a boron-doped diamond anode. Chemical Engineering Journal, 2018, 333, 486-494.	12.7	69
8	Nanofiltration performances after membrane bioreactor for hospital wastewater treatment: Fouling mechanisms and the quantitative link between stable fluxes and the water matrix. Water Research, 2018, 146, 77-87.	11.3	29
9	Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation. Chemosphere, 2018, 212, 784-793.	8.2	78
10	Indirect Electrochemical Oxidation Using Hydroxyl Radical, Active Chlorine, and Peroxodisulfate., 2018,, 133-164.		19
11	On the role of salts for the treatment of wastewaters containing pharmaceuticals by electrochemical oxidation using a boron doped diamond anode. Electrochimica Acta, 2017, 231, 309-318.	5. 2	139
12	Fouling control using critical, threshold and limiting fluxes concepts for cross-flow NF of a complex matrix: Membrane BioReactor effluent. Journal of Membrane Science, 2017, 524, 288-298.	8.2	22
13	New hybrid process combining adsorption on sawdust and electroxidation using a BDD anode for the treatment of dilute wastewater. Separation and Purification Technology, 2017, 175, 1-8.	7.9	16
14	Performance of Ti/Pt and Nb/BDD anodes for dechlorination of nitric acid and regeneration of silver(II) in a tubular reactor for the treatment of solid wastes in nuclear industry. Journal of Applied Electrochemistry, 2015, 45, 779-786.	2.9	2
15	Feasibility of Micropollutants Treatment by Coupling Nanofiltration and Electrochemical Oxidation: Case of Hospital Wastewater. International Journal of Chemical Reactor Engineering, 2015, 13, 153-159.	1.1	14
16	Chemically modified graphite felt as an efficient cathode in electro-Fenton for p-nitrophenol degradation. Electrochimica Acta, 2014, 140, 376-383.	5.2	192
17	Treatment of Diluted Solutions of Methylene Blue by Adsorption Coupled with Electrochemical Regeneration: A Comparative Study of Three Adsorbants. ECS Transactions, 2014, 59, 495-502.	0.5	2
18	Treatment of dilute methylene blue-containing wastewater by coupling sawdust adsorption and electrochemical regeneration. Environmental Science and Pollution Research, 2014, 21, 8565-8572.	5. 3	14

#	Article	IF	CITATIONS
19	Recent updates on electrochemical degradation of bio-refractory organic pollutants using BDD anode: a mini review. Environmental Science and Pollution Research, 2014, 21, 8417-8431.	5.3	93
20	NADH regenerated using immobilized FDH in a continuously supplied reactor – Application to l-lactate synthesis. Chemical Engineering Journal, 2014, 239, 216-225.	12.7	18
21	Electrochemical sensors and devices for heavy metals assay in water: the French groups' contribution. Frontiers in Chemistry, 2014, 2, 19.	3.6	123
22	Wastewater Treatment by Electrogeneration of Strong Oxidants Using Borondoped Diamond (BDD)., 2014,, 2126-2132.		1
23	Role of Hydroxyl Radicals During the Competitive Electrooxidation of Organic Compounds on a Boron-Doped Diamond Anode. Electrocatalysis, 2013, 4, 346-352.	3.0	43
24	Kinetic Study of the Electrochemical Mineralization of m-Cresol on a Boron-Doped Diamond Anode. Current Organic Chemistry, 2012, 16, 1960-1966.	1.6	16
25	Design and optimization of electrochemical microreactors for continuous electrosynthesis. Journal of Applied Electrochemistry, 2012, 42, 667-677.	2.9	12
26	New electrodes for silver(II) electrogeneration: Comparison between Ti/Pt, Nb/Pt, and Nb/BDD. Chemical Engineering Journal, 2012, 211-212, 53-59.	12.7	13
27	Voltammetric determination of the critical micellar concentration of surfactants by using a boron doped diamond anode. Journal of Applied Electrochemistry, 2010, 40, 1845-1851.	2.9	11
28	Electro-precipitation of magnetite nanoparticles: An electrochemical study. Electrochimica Acta, 2009, 55, 155-158.	5.2	30
29	Electrochemical incineration of cresols: A comparative study between PbO2 and boron-doped diamond anodes. Chemosphere, 2009, 74, 1340-1347.	8.2	115
30	A comparison of electrochemical degradation of phenol on boron doped diamond and lead dioxide anodes. Journal of Applied Electrochemistry, 2008, 38, 329-337.	2.9	89
31	Electrochemical mineralization of sodium dodecylbenzenesulfonate at boron doped diamond anodes. Journal of Applied Electrochemistry, 2007, 37, 1337-1344.	2.9	38
32	Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes. Journal of Applied Electrochemistry, 2007, 38, 93-100.	2.9	56
33	A kinetic study of the electrochemical oxidation of maleic acid on boron doped diamond. Journal of Applied Electrochemistry, 2006, 37, 41-47.	2.9	42
34	Electrochemical preparation of peroxodisulfuric acid using boron doped diamond thin film electrodes. Electrochimica Acta, 2002, 48, 431-436.	5.2	286
35	Preparation of uranium by electrolysis in chloride melt. Journal of Nuclear Materials, 2000, 282, 137-145.	2.7	27
36	Electrochemical reduction of trivalent uranium ions in molten chlorides. Journal of Applied Electrochemistry, 1999, 29, 497-503.	2.9	84

#	Article	IF	CITATIONS
37	Electrochemical nucleation of uranium in molten chlorides. Journal of Applied Electrochemistry, 1999, 29, 505-510.	2.9	39