
Jean-Philippe Pin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076723/publications.pdf Version: 2024-02-01

IEAN-DHILIDDE DIN

#	Article	IF	CITATIONS
1	Metabotropic glutamate receptor orthosteric ligands and their binding sites. Neuropharmacology, 2022, 204, 108886.	4.1	9
2	Structural basis of the activation of metabotropic glutamate receptor 3. Cell Research, 2022, 32, 695-698.	12.0	16
3	Chronic sodium bromide treatment relieves autistic-like behavioral deficits in three mouse models of autism. Neuropsychopharmacology, 2022, 47, 1680-1692.	5.4	6
4	Nanobody-based sensors reveal a high proportion of mGlu heterodimers in the brain. Nature Chemical Biology, 2022, 18, 894-903.	8.0	19
5	Structural basis of GABAB receptor–Gi protein coupling. Nature, 2021, 594, 594-598.	27.8	50
6	G proteinâ€coupled receptors can control the Hippo/YAP pathway through Gq signaling. FASEB Journal, 2021, 35, e21668.	0.5	14
7	GABA _B receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
8	Structures of human mGlu2 and mGlu7 homo- and heterodimers. Nature, 2021, 594, 589-593.	27.8	66
9	Agonists and allosteric modulators promote signaling from different metabotropic glutamate receptor 5 conformations. Cell Reports, 2021, 36, 109648.	6.4	32
10	A nanobody activating metabotropic glutamate receptor 4 discriminates between homo- and heterodimers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	11
11	Metabotropic glutamate receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
12	Class A Orphans in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	3
13	Allosteric modulators enhance agonist efficacy by increasing the residence time of a GPCR in the active state. Nature Communications, 2021, 12, 5426.	12.8	34
14	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
15	GABAB1e promotes the malignancy of human cancer cells by targeting the tyrosine phosphatase PTPN12. IScience, 2021, 24, 103311.	4.1	6
16	The GABA _B receptor mediates neuroprotection by coupling to G ₁₃ . Science Signaling, 2021, 14, eaaz4112.	3.6	11
17	SGIP1 modulates kinetics and interactions of the cannabinoid receptor 1 and G proteinâ€coupled receptor kinase 3 signalosome. Journal of Neurochemistry, 2021, , .	3.9	5
18	Allosteric ligands control the activation of a class C GPCR heterodimer by acting at the transmembrane interface. ELife, 2021, 10, .	6.0	14

#	Article	IF	CITATIONS
19	Illuminating the allosteric modulation of the calcium-sensing receptor. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21711-21722.	7.1	37
20	Structural basis for distinct quality control mechanisms of GABA _B receptor during evolution. FASEB Journal, 2020, 34, 16348-16363.	0.5	4
21	Structural basis of the activation of a metabotropic GABA receptor. Nature, 2020, 584, 298-303.	27.8	92
22	D1-mGlu5 heteromers mediate noncanonical dopamine signaling in Parkinson's disease. Journal of Clinical Investigation, 2020, 130, 1168-1184.	8.2	32
23	Class A Orphans (version 2020.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2020, 2020, .	0.2	7
24	Context-Dependent Signaling of CXC Chemokine Receptor 4 and Atypical Chemokine Receptor 3. Molecular Pharmacology, 2019, 96, 778-793.	2.3	30
25	Nonclassical Ligand-Independent Regulation of Go Protein by an Orphan Class C G-Protein–Coupled Receptor. Molecular Pharmacology, 2019, 96, 233-246.	2.3	11
26	Rearrangement of the transmembrane domain interfaces associated with the activation of a GPCR hetero-oligomer. Nature Communications, 2019, 10, 2765.	12.8	40
27	GPCR interaction as a possible way for allosteric control between receptors. Molecular and Cellular Endocrinology, 2019, 486, 89-95.	3.2	31
28	Time-Resolved FRET-Based Assays to Characterize G Protein-Coupled Receptor Hetero-oligomer Pharmacology. Methods in Molecular Biology, 2019, 1947, 151-168.	0.9	3
29	HTRF® Total and Phospho-YAP (Ser127) Cellular Assays. Methods in Molecular Biology, 2019, 1893, 153-166.	0.9	2
30	Class A Orphans (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
31	Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
32	Metabotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
33	GABA _B receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	Ο
34	Modulation of Metabotropic Glutamate Receptors by Orthosteric, Allosteric, and Light-Operated Ligands. Topics in Medicinal Chemistry, 2018, , 253-284.	0.8	0
35	Increased Potency and Selectivity for Group III Metabotropic Glutamate Receptor Agonists Binding at Dual sites. Journal of Medicinal Chemistry, 2018, 61, 1969-1989.	6.4	26
36	Allosteric interactions between GABAB1 subunits control orthosteric binding sites occupancy within GABAB oligomers. Neuropharmacology, 2018, 136, 92-101.	4.1	14

#	Article	IF	CITATIONS
37	Direct coupling of detergent purified human mGlu5 receptor to the heterotrimeric G proteins Gq and Gs. Scientific Reports, 2018, 8, 4407.	3.3	18
38	Inhibition of neuronal FLT3 receptor tyrosine kinase alleviates peripheral neuropathic pain in mice. Nature Communications, 2018, 9, 1042.	12.8	47
39	From the Promiscuous Asenapine to Potent Fluorescent Ligands Acting at a Series of Aminergic G-Protein-Coupled Receptors. Journal of Medicinal Chemistry, 2018, 61, 174-188.	6.4	13
40	Oligomerization of a G protein-coupled receptor in neurons controlled by its structural dynamics. Scientific Reports, 2018, 8, 10414.	3.3	32
41	Chloride ions stabilize the glutamate-induced active state of the metabotropic glutamate receptor 3. Neuropharmacology, 2018, 140, 275-286.	4.1	26
42	Profiling of orthosteric and allosteric group-III metabotropic glutamate receptor ligands on various G protein-coupled receptors with Tag-lite® assays. Neuropharmacology, 2018, 140, 233-245.	4.1	6
43	HTS-compatible FRET-based conformational sensors clarify membrane receptor activation. Nature Chemical Biology, 2017, 13, 372-380.	8.0	52
44	FRET-Based Sensors Unravel Activation and Allosteric Modulation of the GABAB Receptor. Cell Chemical Biology, 2017, 24, 360-370.	5.2	30
45	Antibodies targeting G protein-coupled receptors: Recent advances and therapeutic challenges. MAbs, 2017, 9, 735-741.	5.2	19
46	Fluorescent-Based Strategies to Investigate G Protein-Coupled Receptors: Evolution of the Techniques to a Better Understanding. Topics in Medicinal Chemistry, 2017, , 217-252.	0.8	1
47	Illuminating Phenylazopyridines To Photoswitch Metabotropic Glutamate Receptors: From the Flask to the Animals. ACS Central Science, 2017, 3, 81-91.	11.3	58
48	Structure, Dynamics, and Modulation of Metabotropic Glutamate Receptors. Receptors, 2017, , 129-147.	0.2	1
49	Class C GPCRs: Metabotropic Glutamate Receptors. , 2017, , 327-356.		0
50	Analysis of positive and negative allosteric modulation in metabotropic glutamate receptors 4 and 5 with a dual ligand. Scientific Reports, 2017, 7, 4944.	3.3	14
51	Allosteric nanobodies uncover a role of hippocampal mGlu2 receptor homodimers in contextual fear consolidation. Nature Communications, 2017, 8, 1967.	12.8	66
52	Class C G protein-coupled receptors: reviving old couples with new partners. Biophysics Reports, 2017, 3, 57-63.	0.8	38
53	RgIA4 Potently Blocks Mouse α9α10 nAChRs and Provides Long Lasting Protection against Oxaliplatin-Induced Cold Allodynia. Frontiers in Cellular Neuroscience, 2017, 11, 219.	3.7	56
54	Optical control of pain in vivo with a photoactive mGlu5 receptor negative allosteric modulator. ELife, 2017, 6, .	6.0	48

#	Article	IF	CITATIONS
55	Pharmacological evidence for a metabotropic glutamate receptor heterodimer in neuronal cells. ELife, 2017, 6, .	6.0	63
56	Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer. ELife, 2017, 6, .	6.0	48
57	Organization and functions of mGlu and GABAB receptor complexes. Nature, 2016, 540, 60-68.	27.8	198
58	Identification of key phosphorylation sites in PTH1R that determine arrestin3 binding and fine-tune receptor signaling. Biochemical Journal, 2016, 473, 4173-4192.	3.7	25
59	OptoGluNAM4.1, a Photoswitchable Allosteric Antagonist for Real-Time Control of mGlu 4 Receptor Activity. Cell Chemical Biology, 2016, 23, 929-934.	5.2	68
60	New 4-Functionalized Glutamate Analogues Are Selective Agonists at Metabotropic Glutamate Receptor Subtype 2 or Selective Agonists at Metabotropic Glutamate Receptor Group III. Journal of Medicinal Chemistry, 2016, 59, 914-924.	6.4	14
61	A negative allosteric modulator modulates GABAB-receptor signalling through GB2 subunits. Biochemical Journal, 2016, 473, 779-787.	3.7	19
62	Activation Mechanism and Allosteric Properties of the GABAB Receptor. , 2016, , 93-108.		2
63	Shining Light on an mGlu5 Photoswitchable NAM: A Theoretical Perspective. Current Neuropharmacology, 2016, 14, 441-454.	2.9	18
64	Untangling dopamine-adenosine receptor assembly in experimental parkinsonism. DMM Disease Models and Mechanisms, 2015, 8, 57-63.	2.4	55
65	Synthesis and studies on the mGluR agonist activity of FAP4 stereoisomers. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2523-2526.	2.2	8
66	GABAB receptor promotes its own surface expression by recruiting a Rap1-dependent signaling cascade. Journal of Cell Science, 2015, 128, 2302-2313.	2.0	25
67	Generic GPCR residue numbers – aligning topology maps while minding the gaps. Trends in Pharmacological Sciences, 2015, 36, 22-31.	8.7	387
68	Multicolor timeâ€resolved Förster resonance energy transfer microscopy reveals the impact of GPCR oligomerization on internalization processes. FASEB Journal, 2015, 29, 2235-2246.	0.5	41
69	Editorial overview: Neurosciences: Targeting glutamatergic signaling in CNS diseases: new hopes?. Current Opinion in Pharmacology, 2015, 20, iv-vi.	3.5	1
70	The metabotropic glutamate receptors. , 2015, , 269-282.		0
71	Dynamics and modulation of metabotropic glutamate receptors. Current Opinion in Pharmacology, 2015, 20, 95-101.	3.5	57
72	Allosteric modulation of metabotropic glutamate receptors by chloride ions. FASEB Journal, 2015, 29, 4174-4188.	0.5	37

#	Article	IF	CITATIONS
73	G Protein–Coupled Receptor Multimers: A Question Still Open Despite the Use of Novel Approaches. Molecular Pharmacology, 2015, 88, 561-571.	2.3	64
74	Major ligand-induced rearrangement of the heptahelical domain interface in a GPCR dimer. Nature Chemical Biology, 2015, 11, 134-140.	8.0	172
75	Overlapping binding sites drive allosteric agonism and positive cooperativity in type 4 metabotropic glutamate receptors. FASEB Journal, 2015, 29, 116-130.	0.5	54
76	Determination of the absolute configuration of phosphinic analogues of glutamate. Organic and Biomolecular Chemistry, 2015, 13, 1106-1112.	2.8	6
77	Time-Resolved FRET Binding Assay to Investigate Hetero-Oligomer Binding Properties: Proof of Concept with Dopamine D ₁ /D ₃ Heterodimer. ACS Chemical Biology, 2015, 10, 466-474.	3.4	39
78	Time-Resolved FRET Strategy to Screen GPCR Ligand Library. Methods in Molecular Biology, 2015, 1272, 23-36.	0.9	15
79	Complex GABAB receptor complexes: how to generate multiple functionally distinct units from a single receptor. Frontiers in Pharmacology, 2014, 5, 12.	3.5	42
80	The chemokine CXC4 and CC2 receptors form homo―and heterooligomers that can engage their signaling Gâ€protein effectors and l²arrestin. FASEB Journal, 2014, 28, 4509-4523.	0.5	47
81	Homogeneous Time-Resolved Fluorescence-Based Assay to Monitor Extracellular Signal-Regulated Kinase Signaling in a High-Throughput Format. Frontiers in Endocrinology, 2014, 5, 94.	3.5	16
82	Exploring the Active Conformation of Cyclohexane Carboxylate Positive Allosteric Modulators of the Typeâ€4 Metabotropic Glutamate Receptor. ChemMedChem, 2014, 9, 2685-2698.	3.2	1
83	Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nature Communications, 2014, 5, 5206.	12.8	89
84	G Protein–Coupled Receptor Oligomerization Revisited: Functional and Pharmacological Perspectives. Pharmacological Reviews, 2014, 66, 413-434.	16.0	497
85	An allosteric modulator to control endogenous G protein-coupled receptors with light. Nature Chemical Biology, 2014, 10, 813-815.	8.0	147
86	International Union of Basic and Clinical Pharmacology. XC. Multisite Pharmacology: Recommendations for the Nomenclature of Receptor Allosterism and Allosteric Ligands. Pharmacological Reviews, 2014, 66, 918-947.	16.0	189
87	Biased signaling through Gâ€proteinâ€coupled PROKR2 receptors harboring missense mutations. FASEB Journal, 2014, 28, 3734-3744.	0.5	37
88	Fluorescent ligands to investigate GPCR binding properties and oligomerization. Biochemical Society Transactions, 2013, 41, 148-153.	3.4	27
89	Time-Resolved Förster Resonance Energy Transfer-Based Technologies to Investigate G Protein-Coupled Receptor Machinery. Progress in Molecular Biology and Translational Science, 2013, 113, 275-312.	1.7	8
90	Tuning synaptic activity with light-controlled GPCRs. Nature Neuroscience, 2013, 16, 377-379.	14.8	1

#	Article	IF	CITATIONS
91	Interaction of Protease-Activated Receptor 2 with G Proteins and \hat{l}^2 -Arrestin 1 Studied by Bioluminescence Resonance Energy Transfer. Frontiers in Endocrinology, 2013, 4, 196.	3.5	21
92	Up-regulation of GABAB Receptor Signaling by Constitutive Assembly with the K+ Channel Tetramerization Domain-containing Protein 12 (KCTD12). Journal of Biological Chemistry, 2013, 288, 24848-24856.	3.4	33
93	llluminating the activation mechanisms and allosteric properties of metabotropic glutamate receptors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1416-25.	7.1	103
94	Alleviating Pain Hypersensitivity through Activation of Type 4 Metabotropic Glutamate Receptor. Journal of Neuroscience, 2013, 33, 18951-18965.	3.6	52
95	BRET and Time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues. Frontiers in Endocrinology, 2012, 3, 92.	3.5	67
96	Receptor-G Protein Interaction Studied by Bioluminescence Resonance Energy Transfer: Lessons from Protease-Activated Receptor 1. Frontiers in Endocrinology, 2012, 3, 82.	3.5	22
97	Distinct roles of metabotropic glutamate receptor dimerization in agonist activation and G-protein coupling. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16342-16347.	7.1	152
98	Stability of GABA _B receptor oligomers revealed by dual TRâ€FRET and drugâ€induced cell surface targeting. FASEB Journal, 2012, 26, 3430-3439.	0.5	32
99	Sequential Inter- and Intrasubunit Rearrangements During Activation of Dimeric Metabotropic Glutamate Receptor 1. Science Signaling, 2012, 5, ra59.	3.6	82
100	α-Amino-β-fluorocyclopropanecarboxylic acids as a new tool for drug development: Synthesis of glutamic acid analogs and agonist activity towards metabotropic glutamate receptor 4. Bioorganic and Medicinal Chemistry, 2012, 20, 4716-4726.	3.0	30
101	New Fluorescent Strategies Shine Light on the Evolving Concept of GPCR Oligomerization. Springer Series on Fluorescence, 2012, , 389-415.	0.8	0
102	A novel selective metabotropic glutamate receptor 4 agonist reveals new possibilities for developing subtype selective ligands with therapeutic potential. FASEB Journal, 2012, 26, 1682-1693.	0.5	85
103	Structure and functional interaction of the extracellular domain of human GABAB receptor GBR2. Nature Neuroscience, 2012, 15, 970-978.	14.8	61
104	A critical pocket close to the glutamate binding site of mGlu receptors opens new possibilities for agonist design. Neuropharmacology, 2011, 60, 102-107.	4.1	25
105	The complexity of their activation mechanism opens new possibilities for the modulation of mGlu and GABAB class C G protein-coupled receptors. Neuropharmacology, 2011, 60, 82-92.	4.1	80
106	Introduction to the special issue on High Resolution Neuropharmacology. Neuropharmacology, 2011, 60, 1-2.	4.1	1
107	<i>Trans</i> -activation between 7TM domains: implication in heterodimeric GABA _B receptor activation. EMBO Journal, 2011, 30, 32-42.	7.8	72
108	The oligomeric state sets GABA _B receptor signalling efficacy. EMBO Journal, 2011, 30, 2336-2349.	7.8	84

#	Article	IF	CITATIONS
109	Dimers and beyond: The functional puzzles of class C GPCRs. , 2011, 130, 9-25.		207
110	Class C receptor activation mechanisms illustrated by <scp>mGlu</scp> and GABA _B receptors. A review Flavour and Fragrance Journal, 2011, 26, 218-222.	2.6	0
111	Integrated Synthetic, Pharmacological, and Computational Investigation of <i>cis</i> â€2â€{3,5â€Dichlorophenylcarbamoyl)cyclohexanecarboxylic Acid Enantiomers As Positive Allosteric Modulators of Metabotropic Clutamate Receptor Subtypeâ€4. ChemMedChem, 2011, 6, 131-140.	3.2	9
112	Interdomain movements in metabotropic glutamate receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15480-15485.	7.1	77
113	G Protein Activation by Serotonin Type 4 Receptor Dimers. Journal of Biological Chemistry, 2011, 286, 9985-9997.	3.4	69
114	A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB Journal, 2011, 25, 66-77.	0.5	262
115	Original Fluorescent Ligand-Based Assays Open New Perspectives in G-Protein Coupled Receptor Drug Screening. Pharmaceuticals, 2011, 4, 202-214.	3.8	25
116	Time Resolved FRET Strategy with Fluorescent Ligands to Analyze Receptor Interactions in Native Tissues: Application to GPCR Oligomerization. Methods in Molecular Biology, 2011, 746, 373-387.	0.9	22
117	Cell-Surface Protein–Protein Interaction Analysis with Time-Resolved FRET and Snap-Tag Technologies: Application to G Protein-Coupled Receptor Oligomerization. Methods in Molecular Biology, 2011, 756, 201-214.	0.9	25
118	Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nature Chemical Biology, 2010, 6, 587-594.	8.0	306
119	CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nature Neuroscience, 2010, 13, 622-629.	14.8	176
120	The Metabotropic Glutamate Receptor mGlu7 Activates Phospholipase C, Translocates Munc-13-1 Protein, and Potentiates Glutamate Release at Cerebrocortical Nerve Terminals. Journal of Biological Chemistry, 2010, 285, 17907-17917.	3.4	55
121	GABA _B Receptor Activation Protects Neurons from Apoptosis via IGF-1 Receptor Transactivation. Journal of Neuroscience, 2010, 30, 749-759.	3.6	90
122	Differential association modes of the thrombin receptor PAR ₁ with Gαil, Gα12, and βâ€arrestin 1. FASEB Journal, 2010, 24, 3522-3535.	0.5	62
123	GPCR-OKB: the G Protein Coupled Receptor Oligomer Knowledge Base. Bioinformatics, 2010, 26, 1804-1805.	4.1	74
124	A Virtual Screening Hit Reveals New Possibilities for Developing Group III Metabotropic Glutamate Receptor Agonists. Journal of Medicinal Chemistry, 2010, 53, 2797-2813.	6.4	66
125	Functional crosstalk between GPCRs: with or without oligomerization. Current Opinion in Pharmacology, 2010, 10, 6-13.	3.5	95
126	The asymmetric/symmetric activation of GPCR dimers as a possible mechanistic rationale for multiple signalling pathways. Trends in Pharmacological Sciences, 2010, 31, 15-21.	8.7	69

#	Article	IF	CITATIONS
127	A New Family of Receptor Tyrosine Kinases with a Venus Flytrap Binding Domain in Insects and Other Invertebrates Activated by Aminoacids. PLoS ONE, 2009, 4, e5651.	2.5	52
128	Inhibition of Heterotrimeric G Protein Signaling by a Small Molecule Acting on Gα Subunit. Journal of Biological Chemistry, 2009, 284, 29136-29145.	3.4	67
129	PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity. Human Molecular Genetics, 2009, 18, 75-81.	2.9	192
130	IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels. Nucleic Acids Research, 2009, 37, D680-D685.	14.5	199
131	Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB Journal, 2009, 23, 3619-3628.	0.5	106
132	Metabotropic receptors for glutamate and GABA in pain. Brain Research Reviews, 2009, 60, 43-56.	9.0	176
133	Gâ€proteinâ€eoupled receptor oligomers: two or more for what? Lessons from mGlu and GABA _B receptors. Journal of Physiology, 2009, 587, 5337-5344.	2.9	53
134	Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO Journal, 2009, 28, 2195-2208.	7.8	124
135	Building a new conceptual framework for receptor heteromers. Nature Chemical Biology, 2009, 5, 131-134.	8.0	349
136	Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson's disease treatment. Journal of Neurochemistry, 2009, 109, 1096-1105.	3.9	65
137	Functioning of the dimeric CABAB receptor extracellular domain revealed by glycan wedge scanning. EMBO Journal, 2008, 27, 1321-1332.	7.8	69
138	Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nature Methods, 2008, 5, 561-567.	19.0	452
139	Surface expression of metabotropic glutamate receptor variants mGluR1a and mGluR1b in transfected HEK293 cells. Neuropharmacology, 2008, 55, 409-418.	4.1	22
140	Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain, 2008, 137, 112-124.	4.2	96
141	Modeling the Binding and Function of Metabotropic Glutamate Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 443-456.	2.5	24
142	<i>N</i> -{4-Chloro-2-[(1,3-dioxo-1,3-dihydro-2 <i>H</i> -isoindol-2-yl)methyl]phenyl}-2-hydroxybenzamide (CPPHA) Acts through a Novel Site as a Positive Allosteric Modulator of Group 1 Metabotropic Glutamate Receptors. Molecular Pharmacology, 2008, 73, 909-918.	2.3	91
143	G Protein Activation by the Leukotriene B4 Receptor Dimer. Journal of Biological Chemistry, 2008, 283, 21084-21092.	3.4	42
144	Common Structural Requirements for Heptahelical Domain Function in Class A and Class C G Protein-coupled Receptors. Journal of Biological Chemistry, 2007, 282, 12154-12163.	3.4	63

Jean-Philippe Pin

#	Article	IF	CITATIONS
145	Activation of a Dimeric Metabotropic Glutamate Receptor by Intersubunit Rearrangement. Journal of Biological Chemistry, 2007, 282, 33000-33008.	3.4	92
146	International Union of Basic and Clinical Pharmacology. LXVII. Recommendations for the Recognition and Nomenclature of G Protein-Coupled Receptor Heteromultimers. Pharmacological Reviews, 2007, 59, 5-13.	16.0	274
147	Allosteric Modulators of GABAB Receptors: Mechanism of Action and Therapeutic Perspective. Current Neuropharmacology, 2007, 5, 195-201.	2.9	76
148	Real-Time Analysis of Agonist-Induced Activation of Protease-Activated Receptor 1/Gαi1Protein Complex Measured by Bioluminescence Resonance Energy Transfer in Living Cells. Molecular Pharmacology, 2007, 71, 1329-1340.	2.3	86
149	Interaction of Novel Positive Allosteric Modulators of Metabotropic Glutamate Receptor 5 with the Negative Allosteric Antagonist Site Is Required for Potentiation of Receptor Responses. Molecular Pharmacology, 2007, 71, 1389-1398.	2.3	81
150	Amino-Pyrrolidine Tricarboxylic Acids Give New Insight into Group III Metabotropic Glutamate Receptor Activation Mechanism. Molecular Pharmacology, 2007, 71, 704-712.	2.3	15
151	Synthesis and Biological Evaluation of 1-Amino-2-Phosphonomethylcyclopropanecarboxylic Acids, New Group III Metabotropic Glutamate Receptor Agonists. Journal of Medicinal Chemistry, 2007, 50, 3585-3595.	6.4	49
152	<scp>l</scp> -(+)-2-Amino-4-thiophosphonobutyric Acid (<scp>l</scp> -thioAP4), a New Potent Agonist of Group III Metabotropic Glutamate Receptors:  Increased Distal Acidity Affords Enhanced Potency. Journal of Medicinal Chemistry, 2007, 50, 4656-4664.	6.4	60
153	Requirements and ontology for a G protein-coupled receptor oligomerization knowledge base. BMC Bioinformatics, 2007, 8, 177.	2.6	42
154	Dominant role of GABAB2 and GÎ ² Î ³ for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cellular Signalling, 2007, 19, 1996-2002.	3.6	56
155	Identification and characterization of Hedgehog modulator properties after functional coupling of Smoothened to G15. Biochemical and Biophysical Research Communications, 2006, 349, 471-479.	2.1	36
156	Among the twenty classical l-amino acids, only glutamate directly activates metabotropic glutamate receptors. Neuropharmacology, 2006, 50, 245-253.	4.1	25
157	Asymmetric conformational changes in a GPCR dimer controlled by G-proteins. EMBO Journal, 2006, 25, 5693-5702.	7.8	133
158	d-myo-Inositol 1-phosphate as a surrogate of d-myo-inositol 1,4,5-tris phosphate to monitor G protein-coupled receptor activation. Analytical Biochemistry, 2006, 358, 126-135.	2.4	117
159	Coupling of Agonist Binding to Effector Domain Activation in Metabotropic Glutamate-like Receptors. Journal of Biological Chemistry, 2006, 281, 24653-24661.	3.4	71
160	Probing the Existence of G Protein-Coupled Receptor Dimers by Positive and Negative Ligand-Dependent Cooperative Binding. Molecular Pharmacology, 2006, 70, 1783-1791.	2.3	107
161	Evidence for a single heptahelical domain being turned on upon activation of a dimeric GPCR. EMBO Journal, 2005, 24, 499-509.	7.8	150
162	Asymmetric Functioning of Dimeric Metabotropic Glutamate Receptors Disclosed by Positive Allosteric Modulators. Journal of Biological Chemistry, 2005, 280, 24380-24385.	3.4	114

#	Article	IF	CITATIONS
163	International Union of Pharmacology. LVI. Ghrelin Receptor Nomenclature, Distribution, and Function. Pharmacological Reviews, 2005, 57, 541-546.	16.0	215
164	Assembly-dependent Surface Targeting of the Heterodimeric GABAB Receptor Is Controlled by COPI but Not 14-3-3. Molecular Biology of the Cell, 2005, 16, 5572-5578.	2.1	72
165	Virtual Screening Workflow Development Guided by the "Receiver Operating Characteristic―Curve Approach. Application to High-Throughput Docking on Metabotropic Glutamate Receptor Subtype 4. Journal of Medicinal Chemistry, 2005, 48, 2534-2547.	6.4	548
166	Molecular Determinants Involved in the Allosteric Control of Agonist Affinity in the GABAB Receptor by the GABAB2 Subunit. Journal of Biological Chemistry, 2004, 279, 15824-15830.	3.4	72
167	The Heptahelical Domain of GABAB2 Is Activated Directly by CGP7930, a Positive Allosteric Modulator of the GABAB Receptor. Journal of Biological Chemistry, 2004, 279, 29085-29091.	3.4	186
168	Locking the Dimeric GABAB G-Protein-Coupled Receptor in Its Active State. Journal of Neuroscience, 2004, 24, 370-377.	3.6	82
169	Divergent Evolution in Metabotropic Glutamate Receptors. Journal of Biological Chemistry, 2004, 279, 9313-9320.	3.4	43
170	Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nature Structural and Molecular Biology, 2004, 11, 706-713.	8.2	249
171	Activation mechanism of the heterodimeric GABAB receptor. Biochemical Pharmacology, 2004, 68, 1565-1572.	4.4	144
172	Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Analytical Biochemistry, 2004, 329, 253-262.	2.4	118
173	Allosteric modulators of class-C G-protein-coupled receptors open new possibilities for therapeutic application. Drug Discovery Today: Therapeutic Strategies, 2004, 1, 125-133.	0.5	16
174	Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. , 2003, 98, 325-354.		580
175	An unusual receptor tyrosine kinase of Schistosoma mansoni contains a Venus Flytrap module. Molecular and Biochemical Parasitology, 2003, 126, 51-62.	1.1	80
176	Control of constitutive activity of metabotropic glutamate receptors by Homer proteins. International Congress Series, 2003, 1249, 245-251.	0.2	5
177	The Metabotropic Glutamate Receptor mGluR5 Is Endocytosed by a Clathrin-independent Pathway. Journal of Biological Chemistry, 2003, 278, 12222-12230.	3.4	87
178	The Second Intracellular Loop of Metabotropic Glutamate Receptors Recognizes C Termini of G-protein α-Subunits. Journal of Biological Chemistry, 2003, 278, 35063-35070.	3.4	35
179	A Single Subunit (GB2) Is Required for G-protein Activation by the Heterodimeric GABAB Receptor. Journal of Biological Chemistry, 2002, 277, 3236-3241.	3.4	175
180	Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from mutations converting antagonists into agonists. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11097-11102.	7.1	120

#	Article	IF	CITATIONS
181	The Intracellular Loops of the GB2 Subunit Are Crucial for G-Protein Coupling of the Heteromeric Î ³ -Aminobutyrate B Receptor. Molecular Pharmacology, 2002, 62, 343-350.	2.3	93
182	Common and Selective Molecular Determinants Involved in Metabotopic Glutamate Receptor Agonist Activity. Journal of Medicinal Chemistry, 2002, 45, 3171-3183.	6.4	69
183	Homer-Dependent Cell Surface Expression of Metabotropic Glutamate Receptor Type 5 in Neurons. Molecular and Cellular Neurosciences, 2002, 20, 323-329.	2.2	137
184	Allosteric modulators of group I metabotropic glutamate receptors: novel subtype-selective ligands and therapeutic perspectives. Current Opinion in Pharmacology, 2002, 2, 43-49.	3.5	142
185	A model for the functioning of family 3 GPCRs. Trends in Pharmacological Sciences, 2002, 23, 268-274.	8.7	109
186	No Ligand Binding in the GB2 Subunit of the GABA _B Receptor Is Required for Activation and Allosteric Interaction between the Subunits. Journal of Neuroscience, 2002, 22, 7352-7361.	3.6	146
187	A single olfactory receptor specifically binds a set of odorant molecules. European Journal of Neuroscience, 2002, 15, 409-418.	2.6	84
188	The Metabotropic Glutamate Receptors: Structure, Activation Mechanism and Pharmacology. CNS and Neurological Disorders, 2002, 1, 297-317.	4.3	241
189	Activation de récepteurs par une protéine intracellulaire : un nouveau concept et un nouveau type de cible pharmacologique. Medecine/Sciences, 2002, 18, 151-153.	0.2	Ο
190	Molecular determinants of metabotropic glutamate receptor signaling. Trends in Pharmacological Sciences, 2001, 22, 114-120.	8.7	291
191	C-Terminal Interaction Is Essential for Surface Trafficking But Not for Heteromeric Assembly of GABA _B Receptors. Journal of Neuroscience, 2001, 21, 1189-1202.	3.6	292
192	New probes of the agonist binding site of metabotropic glutamate receptors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1569-1572.	2.2	11
193	Synthesis and biological evaluation of 2-(3′-(1 H -tetrazol-5-yl)bicyclo[1.1.1]pent-1-yl)glycine (S -TBPG), a novel mGlu1 receptor antagonist. Bioorganic and Medicinal Chemistry, 2001, 9, 221-227.	3.0	81
194	A Novel Site on the Gα-protein That Recognizes Heptahelical Receptors. Journal of Biological Chemistry, 2001, 276, 3262-3269.	3.4	43
195	Positive Allosteric Modulators for γ-Aminobutyric Acid _B Receptors Open New Routes for the Development of Drugs Targeting Family 3 G-Protein-Coupled Receptors. Molecular Pharmacology, 2001, 60, 881-884.	2.3	44
196	First enantiospecific synthesis of a 3,4-dihydroxy- l -glutamic acid [(3 S ,4 S)-DHGA], a new mGluR1 agonist. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 129-133.	2.2	25
197	Pharmacological characterization of the rat metabotropic glutamate receptor type 8a revealed strong similarities and slight differences with the type 4a receptor. European Journal of Pharmacology, 2000, 394, 17-26.	3.5	28
198	Threeâ€dimensional model of the extracellular domain of the type 4a metabotropic glutamate receptor: New insights into the activation process. Protein Science, 2000, 9, 2200-2209.	7.6	63

#	Article	IF	CITATIONS
199	Dendritic and Axonal Targeting of Type 5 Metabotropic Glutamate Receptor Is Regulated by Homer1 Proteins and Neuronal Excitation. Journal of Neuroscience, 2000, 20, 8710-8716.	3.6	215
200	The Non-competitive Antagonists 2-Methyl-6-(phenylethynyl)pyridine and 7-Hydroxyiminocyclopropan[b]chromen-1a-carboxylic Acid Ethyl Ester Interact with Overlapping Binding Pockets in the Transmembrane Region of Group I Metabotropic Glutamate Receptors. Journal of Biological Chemistry, 2000, 275, 33750-33758.	3.4	242
201	Ca ²⁺ Requirement for High-Affinity γ-Aminobutyric Acid (GABA) Binding at GABA _B Receptors: Involvement of Serine 269 of the GABA _B R1 Subunit. Molecular Pharmacology, 2000, 57, 419-426.	2.3	137
202	Mapping the Agonist-binding Site of GABAB Type 1 Subunit Sheds Light on the Activation Process of GABABReceptors. Journal of Biological Chemistry, 2000, 275, 41166-41174.	3.4	120
203	Conservation of the ligand recognition site of metabotropic glutamate receptors during evolution. Neuropharmacology, 2000, 39, 1119-1131.	4.1	47
204	Mutagenesis and Modeling of the GABAB Receptor Extracellular Domain Support a Venus Flytrap Mechanism for Ligand Binding. Journal of Biological Chemistry, 1999, 274, 13362-13369.	3.4	195
205	mGluR7-like metabotropic glutamate receptors inhibit NMDA-mediated excitotoxicity in cultured mouse cerebellar granule neurons. European Journal of Neuroscience, 1999, 11, 663-672.	2.6	65
206	Alternative splicing generates a novel isoform of the rat metabotropic GABA _B R1 receptor. European Journal of Neuroscience, 1999, 11, 2874-2882.	2.6	78
207	New perspectives for the development of selective metabotropic glutamate receptor ligands. European Journal of Pharmacology, 1999, 375, 277-294.	3.5	139
208	Agonist Selectivity of mGluR1 and mGluR2 Metabotropic Receptors: A Different Environment but Similar Recognition of an Extended Glutamate Conformation. Journal of Medicinal Chemistry, 1999, 42, 1546-1555.	6.4	56
209	A simple method to transfer plasmid DNA into neuronal primary cultures: functional expression of the mGlu5 receptor in cerebellar granule cells. Neuropharmacology, 1999, 38, 793-803.	4.1	59
210	Extended glutamate activates metabotropic receptor types 1, 2 and 4: selective features at mGluR4 binding site. Neuropharmacology, 1999, 38, 1543-1551.	4.1	39
211	mGluR7-like receptor and GABAB receptor activation enhance neurotoxic effects of N-methyl-d-aspartate in cultured mouse striatal GABAergic neurones. Neuropharmacology, 1999, 38, 1631-1640.	4.1	31
212	Synthesis and preliminary evaluation of (S)-2-(4′-carboxycubyl)glycine, a new selective mGluR1 antagonist. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1569-1574.	2.2	47
213	Aminobicyclo[2.2.1.]heptane dicarboxylic acids (ABHD), rigid analogs of ACPD and glutamic acid: synthesis and pharmacological activity on metabotropic receptors mGluR1 and mGluR2. Bioorganic and Medicinal Chemistry, 1998, 6, 195-208.	3.0	52
214	Comparative effect of l-CCG-I, DCG-IV and γ-carboxy-l-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology, 1998, 37, 1043-1051.	4.1	148
215	The two faces of glutamate. Nature, 1998, 394, 19-20.	27.8	14
216	Extreme C Terminus of G Protein α-Subunits Contains a Site That Discriminates between Gi-coupled Metabotropic Glutamate Receptors. Journal of Biological Chemistry, 1998, 273, 25765-25769.	3.4	55

Jean-Philippe Pin

#	Article	IF	CITATIONS
217	A Cluster of Basic Residues in the Carboxyl-terminal Tail of the Short Metabotropic Glutamate Receptor 1 Variants Impairs Their Coupling to Phospholipase C. Journal of Biological Chemistry, 1998, 273, 425-432.	3.4	68
218	The G Protein-Coupling Profile of Metabotropic Glutamate Receptors, as Determined with Exogenous G Proteins, Is Independent of Their Ligand Recognition Domain. Molecular Pharmacology, 1998, 53, 778-786.	2.3	74
219	The rat mGlu1d receptor splice variant shares functional properties with the other short isoforms of mGlu1 receptor. European Journal of Pharmacology, 1997, 335, 65-72.	3.5	29
220	PHARMACOLOGY AND FUNCTIONS OF METABOTROPIC GLUTAMATE RECEPTORS. Annual Review of Pharmacology and Toxicology, 1997, 37, 205-237.	9.4	2,824
221	Conformational analysis of glutamic acid analogues as probes of glutamate receptors using molecular modelling and NMR methods. Comparison with specific agonists. Bioorganic and Medicinal Chemistry, 1997, 5, 335-352.	3.0	28
222	Cloning and Functional Expression of a <i>Drosophila</i> Metabotropic Glutamate Receptor Expressed in the Embryonic CNS. Journal of Neuroscience, 1996, 16, 6687-6694.	3.6	111
223	The Second Intracellular Loop of Metabotropic Glutamate Receptor 1 Cooperates with the Other Intracellular Domains to Control Coupling to G-proteins. Journal of Biological Chemistry, 1996, 271, 2199-2205.	3.4	146
224	Synthesis of conformationally-constrained stereospecific analogs of glutamic acid as antagonists of metabotropic receptors. Bioorganic and Medicinal Chemistry Letters, 1995, 5, 2627-2632.	2.2	14
225	Get receptive to metabotropic glutamate receptors. Current Opinion in Neurobiology, 1995, 5, 342-349.	4.2	125
226	Plasticity of NMDA Receptor Expression During Mouse Cerebellar Granule Cell Development. European Journal of Neuroscience, 1994, 6, 1536-1543.	2.6	20
227	35 mM K+-stimulated 45Ca2+ uptake in cerebellar granule cell cultures mainly results from NMDA receptor activation. European Journal of Pharmacology, 1993, 244, 57-65.	2.6	22
228	NMDA receptor activation stimulates phospholipase A2 and somatostatin release from rat cortical neurons in primary cultures. European Journal of Pharmacology, 1992, 225, 253-262.	2.6	37
229	Effect of Glutamate and lonomycin on the Release of Arachidonic Acid, Prostaglandins and HETEs from Cultured Neurons and Astrocytes. European Journal of Neuroscience, 1991, 3, 928-939.	2.6	43
230	Phospholipase A2and Somatostatin Release are Activated in Response to N-Methyl-D-Aspartate Receptor Stimulation in Hypothalamic Neurons in Primary Culture. Journal of Neuroendocrinology, 1991, 3, 515-522.	2.6	11
231	Intracellular and Intercellular Messengers Produced by Metabotropic (Qp), AMPA, and NMDA Excitatory Amino Acid Receptors. , 1991, , 73-86.		1
232	On concanavalin A-treated striatal neurons quisqualate clearly behaves as a partial agonist of a receptor fully activated by kainate. European Journal of Pharmacology, 1990, 189, 241-251.	2.6	10
233	ω-Conotoxin GVIA and dihydropyridines discriminate two types of Ca2+ channels involved in GABA release from striatal neurons in culture. European Journal of Pharmacology, 1990, 188, 81-84.	2.6	39
234	Zinc has opposite effects on NMDA and Non-NMDA receptors expressed in xenopus oocytes. Neuron, 1990, 4, 733-740.	8.1	151

#	Article	IF	CITATIONS
235	Intracellular Messengers Associated with Excitatory Amino Acid (EAA) Receptors. Advances in Experimental Medicine and Biology, 1990, 268, 79-91.	1.6	3
236	Complex interaction between quisqualate and kainate receptors as revealed by measurement of GABA release from striatal neurons in primary culture. European Journal of Pharmacology, 1989, 172, 81-91.	2.6	49
237	Endogenous Amino Acid Release from Cultured Cerebellar Neuronal Cells: Effect of Tetanus Toxin on Glutamate Release. Journal of Neurochemistry, 1989, 52, 1229-1239.	3.9	114
238	Cerebellar granule cell survival and maturation induced by K+ and NMDA correlate with c-fos proto-oncogene expression. Neuroscience Letters, 1989, 107, 55-62.	2.1	60
239	A specific quisqualate agonist inhibits kainate responses induced in Xenopus oocytes injected with rat brain RNA. Neuroscience Letters, 1989, 99, 333-339.	2.1	43
240	Maitotoxin-Evoked ?-Aminobutyric Acid Release Is Due Not Only to the Opening of Calcium Channels. Journal of Neurochemistry, 1988, 50, 1227-1232.	3.9	20
241	The presence of non-neuronal cells influences somatostatin release from cultured cerebral cortical cells. Developmental Brain Research, 1988, 40, 89-97.	1.7	22
242	NMDA- and kainate-evoked GABA release from striatal neurones differentiated in primary culture: Differential blocking by phencyclidine. Neuroscience Letters, 1988, 87, 87-92.	2.1	51
243	Chloride transport blockers inhibit the chloride-dependent glutamate binding to rat brain membranes. Neuroscience Letters, 1987, 74, 211-216.	2.1	34
244	Multiple voltage-sensitive calcium channels are probably involved in endogenous GABA release from striatal neurones differentiated in primary culture. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 336, 190-196.	3.0	27
245	Release of Endogenous Amino Acids from Striatal Neurons in Primary Culture. Journal of Neurochemistry, 1986, 47, 594-603.	3.9	56
246	Glutamate stimulates inositol phosphate formation in striatal neurones. Nature, 1985, 317, 717-719.	27.8	730
247	Metabotropic Receptors for Glutamate and GABA. , 0, , .		1