Juliana L Carvalho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076577/publications.pdf

Version: 2024-02-01

361045 395343 1,240 47 20 33 citations h-index g-index papers 51 51 51 2453 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. , 2022, 233, 108021.		12
2	Skin Regenerative Potential of Cupuaçu Seed Extract (Theobroma grandiflorum), a Native Fruit from the Amazon: Development of a Topical Formulation Based on Chitosan-Coated Nanocapsules. Pharmaceutics, 2022, 14, 207.	2.0	7
3	Nanostructured lipid carriers loaded with an association of minoxidil and latanoprost for targeted topical therapy of alopecia. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 172, 78-88.	2.0	15
4	Clinical and biochemical parameters of COVID-19 patients with prior or active dengue fever. Acta Tropica, 2021, 214, 105782.	0.9	24
5	Human Stem Cell-Derived Retinal Pigment Epithelial Cells as a Model for Drug Screening and Pre-Clinical Assays Compared to ARPE-19 Cell Line. International Journal of Stem Cells, 2021, 14, 74-84.	0.8	3
6	Extract from Arrabidaea chica (Fridericia chica) leaves show preventive action for the mitigation of doxorubicin-induced cardiotoxicity. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2021, 73, 513-516.	0.1	1
7	Commentary: Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Frontiers in Immunology, 2021, 12, 682195.	2.2	1
8	Advanced Therapies and Regulatory Framework in Different Areas of the Globe: Past, Present, and Future. Clinical Therapeutics, 2021, 43, e103-e138.	1.1	9
9	Hallmarks of Aging in Macrophages: Consequences to Skin Inflammaging. Cells, 2021, 10, 1323.	1.8	30
10	Hallmarks of aging and immunosenescence: Connecting the dots. Cytokine and Growth Factor Reviews, 2021, 59, 9-21.	3.2	69
11	Host DNA repair response to oxidative damage is modulated by Trypanosoma cruzi in a strain-dependent manner. Acta Tropica, 2021, 224, 106127.	0.9	2
12	In vitro models for investigation of the host-parasite interface - possible applications in acute Chagas disease. Acta Tropica, 2020, 202, 105262.	0.9	11
13	Highly accurate skin-specific methylome analysis algorithm as a platform to screen and validate therapeutics for healthy aging. Clinical Epigenetics, 2020, 12, 105.	1.8	27
14	Mesenchymal Stem Cells: A New Piece in the Puzzle of COVID-19 Treatment. Frontiers in Immunology, 2020, 11, 1563.	2.2	31
15	Intraovarian injection of mesenchymal stem cells improves oocyte yield and in vitro embryo production in a bovine model of fertility loss. Scientific Reports, 2020, 10, 8018.	1.6	15
16	Mechanisms of DNA repair in Trypanosoma cruzi: What do we know so far?. DNA Repair, 2020, 91-92, 102873.	1.3	5
17	GVHD-derived plasma as a priming strategy of mesenchymal stem cells. Stem Cell Research and Therapy, 2020, 11, 156.	2.4	15
18	IDRâ€1018 induces cell proliferation, migration, and reparative gene expression in 2D culture and 3D human skin equivalents. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2018-2030.	1.3	11

#	Article	IF	Citations
19	Correlation of Parasite Burden, kDNA Integration, Autoreactive Antibodies, and Cytokine Pattern in the Pathophysiology of Chagas Disease. Frontiers in Microbiology, 2019, 10, 1856.	1.5	17
20	Microemulsions incorporating Brosimum gaudichaudii extracts as a topical treatment for vitiligo: In vitro stimulation of melanocyte migration and pigmentation. Journal of Molecular Liquids, 2019, 294, 111685.	2.3	15
21	Mesenchymal stem cells immunomodulation: The road to IFN- \hat{l}^3 licensing and the path ahead. Cytokine and Growth Factor Reviews, 2019, 47, 32-42.	3.2	55
22	Functional cardiac fibroblasts derived from human pluripotent stem cells via second heart field progenitors. Nature Communications, 2019, 10, 2238.	5.8	125
23	Unraveling KDM4 histone demethylase expression and its association with adverse cytogenetic findings in chronic lymphocytic leukemia. Medical Oncology, 2019, 36, 3.	1.2	8
24	Assessment of the Immunosuppressive Potential of INF- \hat{I}^3 Licensed Adipose Mesenchymal Stem Cells, Their Secretome and Extracellular Vesicles. Cells, 2019, 8, 22.	1.8	51
25	Rare genetic diseases: update on diagnosis, treatment and online resources. Drug Discovery Today, 2018, 23, 187-195.	3.2	55
26	LL-37 treatment on human peripheral blood mononuclear cells modulates immune response and promotes regulatory T-cells generation. Biomedicine and Pharmacotherapy, 2018, 108, 1584-1590.	2.5	22
27	GLP overexpression is associated with poor prognosis in Chronic Lymphocytic Leukemia and its inhibition induces leukemic cell death. Investigational New Drugs, 2018, 36, 955-960.	1.2	9
28	Breaking the frontiers of cosmetology with antimicrobial peptides. Biotechnology Advances, 2018, 36, 2019-2031.	6.0	32
29	The <i>In Vitro</i> and <i>In Vivo</i> Antiangiogenic Effects of Flavokawain B. Phytotherapy Research, 2017, 31, 1607-1613.	2.8	21
30	Stem cells in cardiovascular diseases: turning bad days into good ones. Drug Discovery Today, 2017, 22, 1730-1739.	3.2	7
31	Immunomodulatory and neuroprotective effect of cryopreserved allogeneic mesenchymal stem cells on spinal cord injury in rats. Genetics and Molecular Research, 2017, 16, .	0.3	14
32	LL-37 boosts immunosuppressive function of placenta-derived mesenchymal stromal cells. Stem Cell Research and Therapy, 2016, 7, 189.	2.4	23
33	Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signalling, 2016, 12, 595-609.	1.1	49
34	Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization. BioMed Research International, 2015, 2015, 1-8.	0.9	6
35	Mesenchymal stem cells engrafted in a fibrin scaffold stimulate Schwann cell reactivity and axonal regeneration following sciatic nerve tubulization. Brain Research Bulletin, 2015, 112, 14-24.	1.4	46
36	Osteogenic differentiation of adipose-derived stem cells in mesoporous SBA-16 and SBA-16 hydroxyapatite scaffolds. RSC Advances, 2015, 5, 54551-54562.	1.7	7

#	Article	IF	CITATIONS
37	Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicology Letters, 2014, 224, 380-386.	0.4	34
38	Priming mesenchymal stem cells boosts stem cell therapy to treat myocardial infarction. Journal of Cellular and Molecular Medicine, 2013, 17, 617-625.	1.6	47
39	Cytoplasmic-targeted parvalbumin blocks the proliferation of multipotent mesenchymal stromal cells in prophase. Stem Cell Research and Therapy, 2013, 4, 92.	2.4	5
40	Neuroprotective effects of mesenchymal stem cells on spinal motoneurons following ventral root axotomy: Synapse stability and axonal regeneration. Neuroscience, 2013, 250, 715-732.	1.1	53
41	Diferenciação de células-tronco mesenquimais derivadas do tecido adiposo em cardiomiócitos. Arquivos Brasileiros De Cardiologia, 2013, 100, 82-89.	0.3	45
42	Doxorubicin Cardiotoxicity and Cardiac Function Improvement After Stem Cell Therapy Diagnosed by Strain Echocardiography. Journal of Cancer Science & Therapy, 2013, 05, 52-57.	1.7	47
43	Characterization of Decellularized Heart Matrices as Biomaterials for Regular and Whole Organ Tissue Engineering and Initial In-vitro Recellularization with Ips Cells. Journal of Tissue Science & Engineering, 2012, S11, 002.	0.2	14
44	Mesenchymal stem cells enhanced cardiac function as detected by radial strain echocardiography in a doxorubicin induced cardiotoxicity. Toxicology Letters, 2011, 205, S58-S59.	0.4	0
45	Doxorubicin induced toxicity in mesenchymal stem cells. Toxicology Letters, 2011, 205, S115-S116.	0.4	O
46	Time-Dependent Migration of Systemically Delivered Bone Marrow Mesenchymal Stem Cells to the Infarcted Heart. Cell Transplantation, 2010, 19, 219-230.	1.2	133
47	Cardiac differentiation of human pluripotent stem cells using defined extracellular matrix proteins reveals essential role of fibronectin. ELife, 0, 11 , .	2.8	6