

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer's Disease Mouse Models. Cell, 2010, 142, 387-397.	28.9	1,563
2	Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer's mice. Science, 2016, 354, 904-908.	12.6	241
3	Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13888-13893.	7.1	237
4	Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15997-16002.	7.1	201
5	Primary support cultures of hippocampal and substantia nigra neurons. Nature Protocols, 2009, 4, 78-85.	12.0	185
6	Neuronal MicroRNA Deregulation in Response to Alzheimer's Disease Amyloid-β. PLoS ONE, 2010, 5, e11070.	2.5	183
7	Experimental Diabetes Mellitus Exacerbates Tau Pathology in a Transgenic Mouse Model of Alzheimer's Disease. PLoS ONE, 2009, 4, e7917.	2.5	161
8	A Decade of Tau Transgenic Animal Models and Beyond. Brain Pathology, 2007, 17, 91-103.	4.1	145
9	Tau-Targeted Immunization Impedes Progression of Neurofibrillary Histopathology in Aged P301L Tau Transgenic Mice. PLoS ONE, 2011, 6, e26860.	2.5	142
10	Phosphorylated Tau Interacts with c-Jun N-terminal Kinase-interacting Protein 1 (JIP1) in Alzheimer Disease. Journal of Biological Chemistry, 2009, 284, 20909-20916.	3.4	139
11	Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nature Communications, 2017, 8, 473.	12.8	134
12	Lessons from Tau-Deficient Mice. International Journal of Alzheimer's Disease, 2012, 2012, 1-8.	2.0	99
13	Cytoplasmic Accumulation and Aggregation of TDP-43 upon Proteasome Inhibition in Cultured Neurons. PLoS ONE, 2011, 6, e22850.	2.5	91
14	Tau-Mediated Nuclear Depletion and Cytoplasmic Accumulation of SFPQ in Alzheimer's and Pick's Disease. PLoS ONE, 2012, 7, e35678.	2.5	82
15	ALS/FTLD: experimental models and reality. Acta Neuropathologica, 2017, 133, 177-196.	7.7	78
16	Physiological changes in neurodegeneration — mechanistic insights and clinical utility. Nature Reviews Neurology, 2018, 14, 259-271.	10.1	72
17	Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nature Communications, 2015, 6, 8836.	12.8	70
18	Tau downregulates BDNF expression in animal and cellular models of Alzheimer's disease. Neurobiology of Aging, 2016, 48, 135-142.	3.1	63

Yazi D Ke

#	Article	IF	CITATIONS
19	TDP-43 mutations causing amyotrophic lateral sclerosis are associated with altered expression of RNA-binding protein hnRNP K and affect the Nrf2 antioxidant pathway. Human Molecular Genetics, 2017, 26, 1732-1746.	2.9	62
20	Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS. Acta Neuropathologica, 2015, 130, 661-678.	7.7	61
21	An N-terminal motif unique to primate tau enables differential protein–protein interactions. Journal of Biological Chemistry, 2018, 293, 3710-3719.	3.4	53
22	Brief update on different roles of tau in neurodegeneration. IUBMB Life, 2011, 63, 495-502.	3.4	42
23	Phosphorylation of soluble tau differs in Pick's disease and Alzheimer's disease brains. Journal of Neural Transmission, 2009, 116, 1243-1251.	2.8	35
24	No Overt Deficits in Aged Tau-Deficient C57Bl/6.Mapttm1(EGFP)Kit GFP Knockin Mice. PLoS ONE, 2016, 11, e0163236.	2.5	35
25	Disinhibition-like behavior in a P301S mutant tau transgenic mouse model of frontotemporal dementia. Neuroscience Letters, 2016, 631, 24-29.	2.1	34
26	Generation of a New Tau Knockout (taul̂"ex1) Line Using CRISPR/Cas9 Genome Editing in Mice. Journal of Alzheimer's Disease, 2018, 62, 571-578.	2.6	29
27	TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. International Journal of Molecular Sciences, 2021, 22, 7781.	4.1	26
28	Dissecting Toxicity of Tau and \hat{I}^2 -Amyloid. Neurodegenerative Diseases, 2010, 7, 10-12.	1.4	25
29	Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ. Acta Neuropathologica, 2020, 140, 279-294.	7.7	24
30	Mouse models of frontotemporal dementia: A comparison of phenotypes with clinical symptomatology. Neuroscience and Biobehavioral Reviews, 2017, 74, 126-138.	6.1	23
31	Adenoâ€associated virusâ€based Alzheimer's disease mouse models and potential new therapeutic avenues. British Journal of Pharmacology, 2019, 176, 3649-3665.	5.4	22
32	ERK inhibition with PD184161 mitigates brain damage in a mouse model of stroke. Journal of Neural Transmission, 2014, 121, 543-7.	2.8	20
33	Rapid initiation of cell cycle reentry processes protects neurons from amyloid-β toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	19
34	Peptide Nanofiber Substrates for Long-Term Culturing of Primary Neurons. ACS Applied Materials & Interfaces, 2018, 10, 25127-25134.	8.0	16
35	ALS/FTD-causing mutation in cyclin F causes the dysregulation of SFPQ. Human Molecular Genetics, 2021, 30, 971-984.	2.9	16
36	Altered levels of PP2A regulatory B/PR55 isoforms indicate role in neuronal differentiation. International Journal of Developmental Neuroscience, 2006, 24, 437-443.	1.6	15

Yazi D Ke

#	Article	IF	CITATIONS
37	Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer's disease. Acta Neuropathologica, 2022, 144, 637-650.	7.7	15
38	Pathological manifestation of human endogenous retrovirus K in frontotemporal dementia. Communications Medicine, 2021, 1, .	4.2	14
39	Onset of hippocampal network aberration and memory deficits in P301S tau mice are associated with an early gene signature. Brain, 2020, 143, 1889-1904.	7.6	12
40	CNS cell type–specific gene profiling of P301S tau transgenic mice identifies genes dysregulated by progressive tau accumulation. Journal of Biological Chemistry, 2019, 294, 14149-14162.	3.4	10
41	Functional Genomics Dissects Pathomechanisms in Tauopathies: Mitosis Failure and Unfolded Protein Response. Neurodegenerative Diseases, 2008, 5, 179-181.	1.4	9
42	Selective Spatiotemporal Vulnerability of Central Nervous System Neurons to Pathologic TAR DNA-Binding Protein 43 in Aged Transgenic Mice. American Journal of Pathology, 2018, 188, 1447-1456.	3.8	8
43	Developmental Expression of Mutant PFN1 in Motor Neurons Impacts Neuronal Growth and Motor Performance of Young and Adult Mice. Frontiers in Molecular Neuroscience, 2019, 12, 231.	2.9	8
44	Syntaxins 6 and 8 facilitate tau into secretory pathways. Biochemical Journal, 2021, 478, 1471-1484.	3.7	7
45	Recent progress in synthetic self-adjuvanting vaccine development. Biomaterials Science, 2022, 10, 4037-4057.	5.4	5
46	Contribution of endogenous antibodies to learning deficits and astrocytosis in human P301S mutant tau transgenic mice. Scientific Reports, 2020, 10, 13845.	3.3	2
47	K369I Tau Mice Demonstrate a Shift Towards Striatal Neuron Burst Firing and Goal-directed Behaviour. Neuroscience, 2020, 449, 46-62.	2.3	2
48	The Nature of Diamino Linker and Halogen Bonding Define Selectivity of Pyrrolopyrimidine-Based LIMK1 Inhibitors. Frontiers in Chemistry, 2021, 9, 781213.	3.6	2
49	Alzheimer's Disease and Frontotemporal Lobar Degeneration: Mouse Models. , 2018, , 187-219.		1
50	Neurodegeneration and Motor Deficits in the Absence of Astrogliosis upon Transgenic Mutant TDP-43 Expression in Mature Mice. American Journal of Pathology, 2020, 190, 1713-1722.	3.8	1
51	Differential mitochondrial protein interaction profile between human translocator protein and its A147T polymorphism variant. PLoS ONE, 2022, 17, e0254296.	2.5	1
52	Onset of motor deficits, but not their severity, is augmented by TREM2 reduction in P301S tau transgenic mice. Alzheimer's and Dementia, 2020, 16, e040610.	0.8	0
53	Overexpression of Tropomyosin Isoform Tpm3.1 Does Not Alter Synaptic Function in Hippocampal Neurons. International Journal of Molecular Sciences, 2021, 22, 9303.	4.1	0
54	Alzheimer's Disease and Frontotemporal Lobar Degeneration: Mouse Models. , 2014, , 111-129.		0