Guansheng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076289/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkane solubilization by surfactants: Aggregate view and size analysis based on cryo-TEM. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128589.	2.3	2
2	Solubilization of residual dodecane by surfactants in porous media: The relation between surfactant partition and solubilization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129421.	2.3	1
3	Production, functional stability, and effect of rhamnolipid biosurfactant from Klebsiella sp. on phenanthrene degradation in various medium systems. Ecotoxicology and Environmental Safety, 2021, 207, 111514.	2.9	51
4	Transport of engineered nanoparticles in porous media and its enhancement for remediation of contaminated groundwater. Critical Reviews in Environmental Science and Technology, 2020, 50, 2301-2378.	6.6	30
5	Sub-CMC solubilization of n-alkanes by rhamnolipid biosurfactant: the Influence of rhamnolipid molecular structure. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111049.	2.5	8
6	Surfactant-enhanced aquifer remediation: Mechanisms, influences, limitations and the countermeasures. Chemosphere, 2020, 252, 126620.	4.2	58
7	Transport of <i>Pseudomonas aeruginosa</i> in Porous Media Mediated by Lowâ€Concentration Surfactants: The Critical Role of Surfactant to Change Cell Surface Hydrophobicity. Water Resources Research, 2020, 56, e2019WR026103.	1.7	14
8	Mechanisms for rhamnolipids-mediated biodegradation of hydrophobic organic compounds. Science of the Total Environment, 2018, 634, 1-11.	3.9	75
9	Advances in applications of rhamnolipids biosurfactant in environmental remediation: A review. Biotechnology and Bioengineering, 2018, 115, 796-814.	1.7	148
10	Effects of rhamnolipids on microorganism characteristics and applications in composting: A review. Microbiological Research, 2017, 200, 33-44.	2.5	133
11	Transport of bacteria in porous media and its enhancement by surfactants for bioaugmentation: A review. Biotechnology Advances, 2017, 35, 490-504.	6.0	77
12	Effect of lowâ€concentration rhamnolipid biosurfactant on <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> transport in natural porous media. Water Resources Research, 2017, 53, 361-375.	1.7	25
13	Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF. Environmental Science and Pollution Research, 2017, 24, 1230-1240.	2.7	17
14	Effect of rhamnolipid solubilization on hexadecane bioavailability: enhancement or reduction?. Journal of Hazardous Materials, 2017, 322, 394-401.	6.5	117
15	Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces. Colloids and Surfaces B: Biointerfaces, 2016, 139, 244-248.	2.5	26