
LÃ;szlÃ³ Jicsinszky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3076198/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeted Delivery Methods for Anticancer Drugs. Cancers, 2022, 14, 622.	3.7	41
2	Investigation of the Drug Carrier Properties of Insoluble Cyclodextrin Polymer Microspheres. Biomolecules, 2022, 12, 931.	4.0	5
3	Complexation of maltodextrin-based inulin and green tea polyphenols via different ultrasonic pretreatment. Ultrasonics Sonochemistry, 2021, 74, 105568.	8.2	23
4	Comparative Studies of Mechanochemically Synthesized Insoluble Beta-Cyclodextrin Polymers. Current Organic Chemistry, 2021, 25, 1923-1936.	1.6	5
5	Toward a Greener World—Cyclodextrin Derivatization by Mechanochemistry. Molecules, 2021, 26, 5193.	3.8	5
6	Cyclodextrins in the antiviral therapy. Journal of Drug Delivery Science and Technology, 2021, 64, 102589.	3.0	26
7	Microwave-Assisted, One-Pot Synthesis of Doxycycline under Heterogeneous Catalysis in Water. Antibiotics, 2021, 10, 1084.	3.7	1
8	Cyclodextrin solubilization and complexation of antiretroviral drug lopinavir: In silico prediction; Effects of derivatization, molar ratio and preparation method. Carbohydrate Polymers, 2020, 227, 115287.	10.2	29
9	Cyclodextrins in Skin Formulations and Transdermal Delivery. Journal of Skin and Stem Cell, 2020, 6, .	0.2	6
10	Reaction of oxiranes with cyclodextrins under high-energy ball-milling conditions. Beilstein Journal of Organic Chemistry, 2019, 15, 1448-1459.	2.2	10
11	In Vitro Enhanced Skin Permeation and Retention of Imiquimod Loaded in β-Cyclodextrin Nanosponge Hydrogel. Pharmaceutics, 2019, 11, 138.	4.5	51
12	Adsorptive Recovery of Iopamidol from Aqueous Solution and Parallel Reuse of Activated Carbon: Batch and Flow Study. Industrial & Engineering Chemistry Research, 2019, 58, 7284-7295.	3.7	13
13	Inhibition of Clostridium perfringens epsilon toxin by β-cyclodextrin derivatives. International Journal of Pharmaceutics, 2017, 531, 714-717.	5.2	4
14	Synthesis and properties of a series of β-cyclodextrin/nitrone spin traps for improved superoxide detection. Organic and Biomolecular Chemistry, 2017, 15, 6358-6366.	2.8	8
15	Synthesis of Randomly Substituted Anionic Cyclodextrins in Ball Milling. Molecules, 2017, 22, 485.	3.8	12
16	Influence of the milling parameters on the nucleophilic substitution reaction of activated β-cyclodextrins. Beilstein Journal of Organic Chemistry, 2017, 13, 1893-1899.	2.2	11
17	Enabling technologies and green processes in cyclodextrin chemistry. Beilstein Journal of Organic Chemistry, 2016, 12, 278-294.	2.2	22
18	Efficient mechanochemical synthesis of regioselective persubstituted cyclodextrins. Beilstein Journal of Organic Chemistry, 2016, 12, 2364-2371.	2.2	19

LÃiszlÃ³ Jicsinszky

#	Article	IF	CITATIONS
19	Nucleophilic Substitutions of 6I-O-Monotosyl-β-cyclodextrin in a Planetary Ball Mill. ACS Sustainable Chemistry and Engineering, 2016, 4, 919-929.	6.7	24
20	A "green―strategy to construct non-covalent, stable and bioactive coatings on porous MOF nanoparticles. Scientific Reports, 2015, 5, 7925.	3.3	139
21	Complexes of peracetylated cyclodextrin in a non-aqueous aprotic medium: the role of residual water. Physical Chemistry Chemical Physics, 2015, 17, 17380-17390.	2.8	11
22	Synthesis of modified cyclic and acyclic dextrins and comparison of their complexation ability. Beilstein Journal of Organic Chemistry, 2014, 10, 2836-2843.	2.2	2
23	Synthetic strategies for the fluorescent labeling of epichlorohydrin-branched cyclodextrin polymers. Beilstein Journal of Organic Chemistry, 2014, 10, 3007-3018.	2.2	22
24	Fluorescent cyclodextrin carriers for a water soluble Zn ^{II} pyrazinoporphyrazine octacation with photosensitizer potential. RSC Advances, 2014, 4, 26359-26367.	3.6	7
25	Cationic permethylated 6-monoamino-6-monodeoxy-β-cyclodextrin as chiral selector of dansylated amino acids in capillary electrophoresis. Journal of Pharmaceutical and Biomedical Analysis, 2014, 99, 16-21.	2.8	10
26	Structure and stability of warfarin-sodium inclusion complexes formed with permethylated monoamino-β-cyclodextrin. Journal of Pharmaceutical and Biomedical Analysis, 2013, 72, 292-298.	2.8	13
27	Structural Equilibrium in New Nitroxide-Capped Cyclodextrins: CW and Pulse EPR Study. Journal of Physical Chemistry B, 2013, 117, 8223-8231.	2.6	10
28	Highly efficient Synthesis of per-substituted amino-cyclodextrins under Microwave Irradiation in a closed Cavity. Materials Research Society Symposia Proceedings, 2013, 1492, 177-182.	0.1	1
29	Recent Applications of Cyclodextrins as Food Additives and in Food Processing. Current Nutrition and Food Science, 2013, 9, 167-179.	0.6	29
30	Femtosecond to Second Studies of a Water-Soluble Porphyrin Derivative in Chemical and Biological Nanocavities. Langmuir, 2012, 28, 4363-4372.	3.5	15
31	A Host–Guest Supramolecular Complex with Photoregulated Delivery of Nitric Oxide and Fluorescence Imaging Capacity in Cancer Cells. Chemistry - an Asian Journal, 2012, 7, 2888-2894.	3.3	19
32	Uptake of a fluorescent methyl-β-cyclodextrin via clathrin-dependent endocytosis. Chemistry and Physics of Lipids, 2012, 165, 505-511.	3.2	40
33	Copper(II)-Complex Directed Regioselective Mono- <i>p</i> -Toluenesulfonylation of Cyclomaltoheptaose at a Primary Hydroxyl Group Position: An NMR and Molecular Dynamics-Aided Design. Journal of Physical Chemistry B, 2011, 115, 7524-7532.	2.6	34
34	Enantiomeric separation of antimalarial drugs by capillary electrophoresis using neutral and negatively charged cyclodextrins. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 475-481.	2.8	41
35	Water soluble heptakis(6-deoxy-6-thio)cyclomaltoheptaose capped gold nanoparticles via metal vapour synthesis: NMR structural characterization and complexation properties. Carbohydrate Research, 2011, 346, 753-758.	2.3	4
36	Symmetry Requirements for Effective Blocking of Pore-Forming Toxins: Comparative Study with α-, β-, and γ-Cyclodextrin Derivatives. Antimicrobial Agents and Chemotherapy, 2011, 55, 3594-3597.	3.2	28

LÃiszlÃ³ Jicsinszky

#	Article	IF	CITATIONS
37	Chiral separation by a monofunctionalized cyclodextrin derivative: From selector to permethyl-β-cyclodextrin bonded stationary phase. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51, 84-89.	2.8	26
38	Separation of cis-β-lactam enantiomers by capillary electrophoresis using cyclodextrin derivatives. Journal of Pharmaceutical and Biomedical Analysis, 2010, 53, 382-388.	2.8	23
39	A new class of cationic cyclodextrins: synthesis and chemico-physical properties. New Journal of Chemistry, 2010, 34, 2013.	2.8	18
40	Improving the Trapping of Superoxide Radical with a βâ€Cyclodextrin– 5â€Diethoxyphosphorylâ€5â€methylâ€1â€pyrrolineâ€ <i>N</i> â€oxide (DEPMPO) Conjugate. Chemistry - A Euro Journal, 2009, 15, 11114-11118.	ාර්ෂයාන	37
41	EPR, NMR, and Thermodynamic Evidences for Forced Nuclear Spin–Electron Spin Interactions in the Case of 1-Phenyl-2-Methylpropyl-1,1-Dimethyl-2-Nitroxide (TIPNO) Attached to Permethylated β-Cyclodextrin. Applied Magnetic Resonance, 2009, 36, 181-194.	1.2	9
42	Cyclodextrin-containing sensors to provide an early warning of contamination. Land Contamination and Reclamation, 2009, 17, 405-412.	0.4	6
43	External vs. Internal Interactions in the Enantiodiscrimination of Fluorinated αâ€Amino Acid Derivatives by Heptakis[2,3â€diâ€ <i>O</i> â€acetylâ€6â€ <i>O</i> â€i< <i>tert</i> â€butyldimethylsilyl)]â€iêacetylâ€6â€ <i>O</i> chiral Solvating Agent for NMR Spectroscopy. European Journal of Organic Chemistry, 2008, 2008, 1855-1863.	Powerful 2.4	18
44	A Maltooctaose Derivative ("Acyclodextrinâ€) as a Chiral Stationary Phase for Enantioselective Gas Chromatography. European Journal of Organic Chemistry, 2008, 2008, 4241-4244.	2.4	10
45	Electron Paramagnetic Resonance Spin Trapping of Glutathiyl Radicals by PBN in the Presence of Cyclodextrins and by PBN Attached to β-Cyclodextrin. Journal of Physical Chemistry B, 2008, 112, 13157-13162.	2.6	11
46	Gas-chromatographic approach to probe the absence of molecular inclusion in enantioseparations by carbohydrates. Investigation of linear dextrins ("acyclodextrinsâ€) as novel chiral stationary phases. Chirality, 2007, 19, 391-400.	2.6	28
47	α-Phenyl-N-tert-butylnitrone-Type Derivatives Bound to β-Cyclodextrins: Syntheses, Thermokinetics of Self-Inclusion and Application to Superoxide Spin-Trapping. Chemistry - A European Journal, 2007, 13, 9344-9354.	3.3	32
48	Efficient regioselective functionalizations of cyclodextrins carried out under microwaves or power ultrasound. Tetrahedron Letters, 2007, 48, 9185-9189.	1.4	26
49	Synthesis and selfâ€assembly behavior study of α,ï‰â€dicarboxylâ€poly(ethylene) Tj ETQq1 1 0.784314 rgBT /0 Polymer Science Part A, 2007, 45, 5149-5155.	Overlock 1 2.3	0 Tf 50 267 5
50	Nitroxide Bound β-Cyclodextrin: Is There an Inclusion Complex?. Journal of Organic Chemistry, 2006, 71, 7657-7667.	3.2	34
51	Application of combined thermoanalytical techniques in the investigation of cyclodextrin inclusion complexes. Journal of Thermal Analysis and Calorimetry, 2006, 84, 693-701.	3.6	24
52	Modified Linear Dextrins ("Acyclodextrinsâ€) as New Chiral Selectors for the Gas-Chromatographic Separation of Enantiomers. Angewandte Chemie - International Edition, 2005, 44, 4092-4095.	13.8	35
53	Thermal characterization of natural and modified cyclodextrins using TG-MS combined technique. Journal of Thermal Analysis and Calorimetry, 2005, 80, 419-424.	3.6	36
54	Influence of (hydroxy)alkylamino substituents on enantioseparation ability of single-isomer amino-β-cyclodextrin derivatives in chiral capillary electrophoresis. Electrophoresis, 2004, 25, 2675-2686.	2.4	45

LÃiszlÂ³ Jicsinszky

#	Article	IF	CITATIONS
55	Synthesis of 6I-amino-6I-deoxy-2l–VII,3l–VII-tetradeca-O-methyl-cyclomaltoheptaose. Carbohydrate Research, 2004, 339, 1361-1366.	2.3	14
56	Synthesis of symmetrically modified α-cyclodextrins: an efficient and easy method. Tetrahedron Letters, 2003, 44, 5411-5413.	1.4	23
57	Capillary Electrophoresis, ROESY NMR and Molecular Modelling Study of the Inclusion Complex β-Cyclodextrin/Lipoic Acid. European Journal of Organic Chemistry, 2002, 2002, 1191-1196.	2.4	25
58	Catalytic transfer hydrogenation of sugar derivatives. Carbohydrate Polymers, 2001, 45, 139-145.	10.2	53
59	Synthesis, characterization and chemisorption on gold of a β-cyclodextrin–lipoic acid conjugate. Tetrahedron Letters, 2001, 42, 5241-5244.	1.4	15
60	Chiral selective separation of tocainide by capillary electrophoresis using various cyclodextrin derivatives. Journal of Separation Science, 2001, 13, 62-68.	1.0	5
61	Chiral separation of pyrethroic acids with single isomer permethyl monoamino β-cyclodextrin selector. Electrophoresis, 2001, 22, 3232-3236.	2.4	22
62	Permethyl monoamino β-cyclodextrin a new chiral selective agent for capillary electrophoresis. Chromatographia, 2000, 53, 166-172.	1.3	17
63	Chiral analysis of metoprolol and its by-products by capillary electrophoresis. Journal of Separation Science, 1999, 11, 716-722.	1.0	12
64	Chiral analysis of metoprolol and its byâ€products by capillary electrophoresis. Journal of Separation Science, 1999, 11, 716-722.	1.0	0
65	Synthesis and Study of New β-Cyclodextrin â€~Dimers' Having a Metal Coordination Center and carboxamide or urea linkers. Helvetica Chimica Acta, 1998, 81, 632-645.	1.6	40
66	Enantiomer separation of disopyramide with capillary electrophoresis using various cyclodextrins. Electrophoresis, 1997, 18, 1002-1006.	2.4	20
67	Phosphated cyclodextrins as new acidic chiral additives for capillary electrophoresis. Journal of Separation Science, 1997, 9, 581-589.	1.0	30
68	One step synthesis of new urea-linked \hat{l}^2 -cyclodextrin dimers. Tetrahedron Letters, 1996, 37, 4011-4014.	1.4	23
69	New type of bridged monoamino-?-Cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1996, 25, 53-56.	1.6	6
70	Hydrogen Bonding Interactions With Cyclodextrins: Utilization of Fluorenone as a New Probe. , 1996, , 255-258.		2
71	Perspectives of Chiral Capillary Electrophoresis Using Phosphated Cyclodextrins as Additives. , 1996, , 649-652.		0
72	Solvent-dependent radiationless transitions in fluorenone: A probe for hydrogen bonding interactions in the cyclodextrin cavity. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 18, 237-245.	1.6	23

LÃiszlÃ³ Jicsinszky

#	Article	IF	CITATIONS
73	Catalytic transfer hydrogenation of cyclodextrin azides and benzylated glucose derivatives. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 18, 247-254.	1.6	9
74	Semiempirical calculations on cyclodextrins. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1994, 18, 275-289.	1.6	19
75	Several Exact Results on Deterministic Exotic Kinetics. Zeitschrift Fur Physikalische Chemie, 1983, 2640, 449-463.	2.8	2
76	Generation of model reactions leading to limit cycle behavior. Reaction Kinetics and Catalysis Letters, 1982, 18, 65-71.	0.6	10